Таким образом, электрическая энергия в живых огранизмах имеет большое значение как носитель информации, необходимой для работы различных механизмов регуляции и управления. И лишь очень немногие организмы, например электрические рыбы, в процессе многовекового отбора выработали некий механизм, использующий энергию электрического импульса как оружие. В этом случае электрический разряд происходит в результате параллельного и последовательного включения многих элементарных "батарей". Конечно, заманчиво поближе познакомиться с природой таких электрических процессов. Каковы они? Как они возникают? Что ими управляет? Однако мы остановимся только на некоторых основных аспектах этой обширной темы.
Невольно напрашивается мысль снова провести аналогию с техникой. Мы уже упоминали об "азбуке Морзе биологической связи", "пластинчатом конденсаторе", "электронной обработке данных". Сейчас инженеры действительно очень интересуются этими вопросами, надеясь почерпнуть в живой природе новые идеи для усовершенствования электронных приборов. Следует, однако, указать на очень важное различие между электрическими явлениями в живых организмах и процессами, протекающими в электронных приборах. В электронике в качестве проводников электрического тока используют металлы или кристаллические полупроводники. Ток в них представляет собой поток электронов, т. е. мельчайших, почти не обладающих массой частиц. Биологические системы лишены металлических участков, у них обнаружены только небольшие области, где могут возникать такие же эффекты, как в органических полупроводниках. Следовательно, электрический ток в клетке не может быть потоком электронов, это должен быть ток, способный проходить через ионные растворы. Ионы, т. е. положительно или отрицательно заряженные атомы и молекулы, переносят заряды, создавая тем самым ток и электрические потенциалы. Основная роль в этом процессе принадлежит, естественно, самым маленьким, и, следовательно, самым быстрым ионам. Это ионы натрия, калия и хлора. Заметим, кстати, что в электронике тоже сплошь и рядом используют ионную проводимость. Хороший пример тому — электролитический конденсатор. На проводимости электролитических растворов основана специальная отрасль электроники, называемая хемотроникой.
Может ли хемотроника живой клетки служить образцом, которому следует безоговорочно подражать? Не совершили ли инженеры ошибки, взяв за основу развития электроники электронную проводимость? С полной уверенностью можно утверждать, что, хотя хемотроника уже на заре своего развития приобрела большое значение, она никогда не вытеснит традиционную электронику. Только в немногих специальных областях можно надеяться получить с помощью хемотроники более качественные и экономичные электронные устройства.