Теперь нам придется расстаться с привычными представлениями и приготовиться многое осмыслить заново. Мы попытаемся проникнуть в царство молекул. Это означает не просто изменение масштабов, т. е. уменьшение наблюдаемого объекта или мысленное увеличение предмета нашего исследования, это означает прежде всего, что перед нами открывается качественно новый мир — мир микрофизики. Там скрыты корни жизни. Различные особенности живых организмов, которые можно легко заметить, например появление чего-то нового в окраске, форме или манере поведения, связанного с изменением наследственности, возникновение определенных болезней, таких, как рак, заболевания крови и т. д., обусловлены изменением молекул. Это одна из причин того, что молекулярная биология и биофизика приобретают в последнее время все большее значение.
Рассказывают, что один архитектор поручил своим ученикам спроектировать дома и квартиры для людей, совсем не похожих на нас: они ходят на четырех ногах, голова у них сбоку и т. д. Что это, бессмысленная прихоть? Отнюдь нет. Будущие архитекторы должны уметь забывать о привычном, должны обладать способностью отойти от традиции и взглянуть на мир новыми глазами.
Однако тот мир, который теперь перед нами откроется, — это не фантастика, ибо современная физика уже разработала для его описания достаточно точные научные представления и понятия. Но прежде чем вступить в царство молекул, мы должны сдать в архив наш привычный повседневный опыт. Теперь нашими проводниками будут учебники статистической физики и квантовой механики, где изложено все, что известно физикам на сегодняшний день. А они неплохо ориентируются в этой области!
С жадным любопытством вступаем мы в новый мир и нетерпеливо спрашиваем: как выглядит белковая молекула, о которой мы слышали столько удивительного? Правда ли, будто она катализирует процессы преобразования энергии и вещества, переносит электроны, совершает механическую работу и многое другое? Увы, нас ждет разочарование, так как наш первый вопрос лишен смысла: молекула вообще не "выглядит!"
Мы привыкли к тому, что все окружающее можно видеть и как-то описать. У твердых тел мы замечаем цвет, форму и размер, у жидкостей — по меньшей мере, цвет и консистенцию. Мышь серая и имеет хвост длиной примерно 15 см. И хотя есть мыши коричневые и белые, большие и маленькие, окраску и размеры каждой конкретной мыши мы можем установить однозначно. Если вскрыть мышь, то в ее голове мы найдем мозг, который тоже имеет определенные форму, размеры и окраску. Мы обнаружим разные области мозга, а вооружившись лупой, можем отчетливо разглядеть главные нервы. Специальными методами приготовим срезы мозга и рассмотрим их под микроскопом. Мы увидим разветвления нервных волокон и органеллы клеток: ядро, аппарат Гольджи, митохондрии. Чтобы различить последние, нам понадобится сильный микроскоп с 1300-кратным увеличением. Но на этом наши возможности "видеть" кончаются.
И дело здесь не в оптической промышленности, которая не создала микроскопов с большей разрешающей способностью. Причина кроется в свойствах света, который мы используем для наблюдения. У синего, еще видимого, света длина волны 0,4 мкм. Вблизи этой границы и. лежит максимум разрешающей способности оптического микроскопа. Точно так же как нельзя заточить карандаш топором, невозможно "видеть" объекты, размеры которых меньше, чем длина волны используемого света.
Ну и что же? Ведь всем известно, что существуют электронные микроскопы. Так называют приборы, которые показывают на экране из сульфида цинка во много раз увеличенную картину распределения электронной плотности очень малых объектов. Это досадно, потому что слово "микроскоп" мы привыкли связывать со словом "видеть". А в электронном микроскопе, если пучок электронов преобразовать в световой пучок, нам удается только получить увеличенное изображение на освещенном экране. Тогда в лучшем случае можно сказать, что мы при помощи некой сложной методики отобразили какую-то чрезвычайно мелкую структуру в сильно увеличенном виде. Но о том, чтобы "видеть" ее, не может быть и речи!