Если представить мембрану в виде плоскости с отверстиями (порами) определенной величины, а ионы как шары соответствующего диаметра, то вся структура в делом будет напоминать сито, с которым дети играют в песочнице. Но ионы — это не обычные отполированные шары, а отверстие диаметром в несколько ангстрем нельзя сравнить с тем, которое оставляет сверло в куске фанеры. Мы уже отмечали, что размеры ионов характеризуются эффективными величинами; то же справедливо и для пор. И если попытаться нарисовать мир молекул более реально, то картину диффузии ионов через мембрану можно описать следующим образом: мелкие частицы проходят через маленькое отверстие, конечно, легче, чем более крупные, но в отличие от твердого шара диаметром, скажем, 4,3 см, который при всем желании не протолкнуть через отверстие диаметром 4,1 см, ион с гидратационным диаметром 4,3 Å может пройти через пору с эффективным диаметром 4,1 Å, если приложенная к нему сила достаточно велика. На основе этих представлений вместо теории избирательной проницаемости (по принципу "все или ничего"), оказавшейся ошибочной, была разработана теория частичной проницаемости (по принципу "больше или меньше").
Итак, нет таких нелепых вопросов, которые не научили бы нас чему-нибудь. Если теперь мы поняли, почему нельзя видеть молекулы и ионы, если мы хоть что-то узнали об этих мельчайших частицах вещества, составляющих все живое, то первую нашу экскурсию в таинственный мир молекул можно считать успешной. Правда, наши познания, которые можно было бы применить к биологии, еще так малы, что нам придется продолжить путешествие в микромир.
Теперь мы займемся новой проблемой — движением материи. Как мы уже говорили, хотя и можно построить модель молекулы, которая будет спокойно лежать перед нами на столе, реальная молекула находится в непрерывном движении. Как оно происходит? Каково его значение для наших рассуждений?
Начнем опять с самого наглядного — модели, взятой из повседневной жизни. Ввинтим в потолок крючки в произвольном порядке, но не слишком далеко друг от друга и подвесим к ним на тонких нитях бильярдные шары так, чтобы они висели на одинаковой высоте достаточно близко друг к другу, но не соприкасаясь. Закроем двери и окна, чтобы никакое движение воздуха нам не мешало, и подождем, пока шары не перестанут раскачиваться. Вот теперь и начнем эксперимент. Сильно толкнем один из шаров в произвольном направлении. Шар не улетит далеко, вскоре он столкнется с соседним шаром. Бильярдные шары изготовляют из качественной древесины, поэтому их соударение будет упругим. Под упругим в физике понимают такой удар, когда импульс полностью передается от одного тела к другому:
Если бы первый шар не висел на нити, подобно маятнику, он сразу бы остановился. То, что он продолжает раскачиваться, безусловно, некоторый недостаток нашей модели, но им можно пренебречь. В любом случае второй шар, приобретя тот же импульс, что имел первый, будет двигаться до тех пор, пока не столкнется со следующим шаром. Итак, первоначальный импульс передается в нашей системе от одного шара к другому. Но не всегда происходит прямое попадание. Часто два шара сталкиваются так, что импульс передается от одного к другому лишь частично. Легко представить, что очень скоро в движение окажутся вовлеченными все шары нашей системы.
Как долго оно будет продолжаться? Это зависит от массы шаров и толщины нитей. Однако в какой-то момент обязательно наступит покой: шары перестанут раскачиваться и неподвижно повиснут на нитях. Но куда же пропала энергия? Ведь она не может бесследно исчезнуть! В то же время ее нет. Точный термометр покажет нам, что температура в комнате (конечно, при условии ее идеальной термоизоляции) слегка повысилась. Механическая энергия превратилась в тепло. Это произошло из-за движения воздуха, а также потому, что шары не являются абсолютно упругими, а обладают некоторой пластичностью.