Читаем Биржевая игра полностью

Трейдеры могут использовать математические формулы в двух си­туациях. Первая ситуация, когда все суммы выигрышей равны так же, как и суммы проигрышей. Однако суммы выигрышей могут отличать­ся от сумм проигрышей так же, как и между собой. Другой случай, ког­да формулы могут быть полезны, - подсчет средних выигрышей и про­игрышей. Очевидно, что вероятностное выражение применяется к ис­торическим данным о проигрышах и выигрышах и не может использо­ваться в прогнозировании. Есть выражение, которое позволяет оце­нить ситуацию, когда суммы выигрышей и проигрышей могут прини­мать бесконечные количественные значения. Это выражение беспо­лезно для целей торговли, поскольку оно применяется к историческим данным о выигрышах/проигрышах. Вероятностное значение соотно­шения выигравших ставок к проигравшим в любой конкретной систе­ме (либо стратегии) является лишь оценочной величиной. А оценка при этом строится на статистических данных. Поэтому, прежде чем под­ставлять в выражение какие-либо данные, необходимо собрать стати­стику. В результате такого положения вещей мы будем использовать данное выражение и просто измерять силу и надежность статистичес­ких данных. При подбрасывании монет мы уже знаем вероятные в бу­дущем варианты, которые существуютвне зависимости от прошлых исходов любого количества падений монеты. В реальном мире торгов­ли мы не имеем подобной информации.

В следующем примере используем это уравнение для известных статистических данных. Для вероятности выигрыша в 63%, при сред­ней сумме выигрышной сделки в 454 доллара, а проигрышной сделки в 458 долларов математическое ожидание будет следующим:

[l+(W/L)]xP-l = [1+(454/458)] х 0,63-1 =

1,99x0,63-1 =0,2537

Сравним это со стратегией, которая имеет следующую статистику:

Средний выигрыш = 2.025 долларов

Средний проигрыш = 1.235 долларов

Процент выгоды =0,52

(1 + 1,64) х 0,52 =

1.37-1 =0,37

Эта система дает немного более высокий математический резуль­тат по сравнению с вышеприведенной статистикой. Следующая стати­стика имеет такие математические характеристики:

Средний выигрыш =3.775 долларов Средний проигрыш = 1.150 долларов Вероятность выигрыша = 65% Математический результат =1,78

Данный математический результат по своему характеру не подда­ется прогнозированию и может использоваться только для вычисле­ния мощности системы по достигнутым результатам в прошлом. В лю­бом случае - это единственная польза от статистических данных, полу­ченных путем записей истории сделок.

Зная, что управление капиталом - это всего лишь числовая игра, которая требует использования положительных ожиданий, трейдер может прекратить поиски "священного Грааля" биржевой торговли. Вместо этого он может заняться проверкой своего торгового метода, выяснить, насколько этот метод логически обоснован, дает ли он поло­жительные ожидания. Правильные методы управления капиталом, применяемые по отношению к любым, даже весьма посредственным методам ведения торговли, сами сделают всю остальную работу.

3

ТИПЫУПРАВЛЕНИЯКАПИТАЛОМ

Цель этой главы состоит не в том, чтобы отделить "хорошие" мето­ды управления капиталом от "плохих". Нет, ее задача - дать читателю общее представление об основных идеях и стратегиях, используемых в процессах управления денежными ресурсами. Поговорим о двух об­ширных группах методов управления - Мартингейл и Анти-Мартингейл методам.

УПРАВЛЕНИЯКАПИТАЛОМПОМАРТИНГЕЙЛУ

Согласно этому методу, по мере уменьшениясуммы счета размер последующей торговли увеличивается.Базовая концепция метода Мартингейл строится на том, что по мере уменьшения суммы в резуль­тате убытков возможность компенсации потерь либо увеличивается,либо остается прежней. Это популярный тип управления капиталом для игроков в азартные игры. Как сказано во второй главе, никакой тип управления капиталом не может превратить сценарий с "отрица­тельным ожиданием" в сценарий с "положительным ожиданием". По­этому игроки не пытаются изменить шансы, они стараются воспользо­ваться сериями. Рассмотрим следующий пример.

Подбросьте монету 100 раз. При каждом подбрасывании вы може­те ставить либо на орел, либо на решку. Однако когда вы будете оказы­ваться в проигрыше, каждая потеря обойдется вам в 5 долларов, в то время как за каждый выигрыш вы получите только по 4 доллара. Это -случай отрицательного математического ожидания. Если ваша ставка составляет 5 долларов при каждой попытке, то, подбросив монету сто раз, вы теряете 50 долларов:

50 подбрасываний х $5 = -$250 50 подбрасываний х $4 = $200 -$250+ $200 =-$50

Перейти на страницу:

Похожие книги

100 абсолютных законов успеха в бизнесе
100 абсолютных законов успеха в бизнесе

Почему одни люди преуспевают в бизнесе больше других? Почему одни предприятия процветают, в то время как другие терпят крах? Известный лектор и писатель по вопросам бизнеса нашел ответы на эти очень трудные вопросы. В своей книге он представляет набор принципов, или `универсальных законов`, которые лежат в основе успеха деловых людей всего мира. Практические рекомендации Трейси имеют вид 100 доступных для понимания и простых в применении законов, относящихся к важнейшим сферам труда и бизнеса. Он также приводит примеры из реальной жизни, которые наглядно иллюстрируют, как работает каждый из законов, а также предлагает читателю упражнения по применению этих законов в работе и жизни.

Брайан Трейси

Деловая литература / Маркетинг, PR, реклама / О бизнесе популярно / Финансы и бизнес