Читаем Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики полностью

При всей непостижимости, это экспериментальный факт: всякий раз, когда мы сокращаем x, неизбежным следствием становится рост v. И аналогично, всё, что приводит к сокращению v, вызывает увеличение x. Чем сильнее мы стараемся зафиксировать положение частицы, тем неопределённее мы делаем её скорость, и наоборот.

Это было грубое описание идеи, но Гейзенберг смог выразить свой принцип неопределённости в более точной, количественной форме. Он утверждает, что произведение , x и массы частицы m всегда больше (>) постоянной Планка h.

mvx > h

Посмотрим, как это работает. Предположим, что мы очень тщательно подготовили частицы, так что величина x чрезвычайно мала. Это вынуждает неопределённость скорости становиться достаточно большой, чтобы произведение было больше h. Чем меньше мы делаем x, тем больше становится .

Как получается, что мы не замечаем проявлений принципа неопределённости в повседневной жизни? Разве бывало такое, чтобы при вождении автомобиля наше положение становилось «размытым», при внимательном взгляде на спидометр? И разве спидометр сходит с ума, когда мы определяем по карте, где именно мы находимся? Конечно нет. Но почему? Ведь принцип неопределённости никому не делает поблажек, он применим ко всему, в том числе к вам и вашему автомобилю, точно так же как к электронам. Ответ связан с массой, которая входит в формулу, и с малостью постоянной Планка. В случае электрона очень малая масса электрона сокращается с малостью h, и потому совокупная неопределённость и x должна быть весьма значительной. Но масса автомобиля очень велика в сравнении с постоянной Планка. Поэтому обе величины и x могут оставаться неизмеримо малыми, не нарушая принципа неопределённости. Теперь понятно, почему природа не приспособила наш мозг к квантовой неопределённости. В этом не было необходимости: в обыденной жизни мы никогда не сталкиваемся с объектами достаточно лёгкими, чтобы приходилось учитывать принцип неопределённости.

Таков принцип неопределённости: непреодолимая уловка-22, гарантирующая, что никто не сможет узнать достаточно, чтобы предсказывать будущее. Мы вернёмся к принципу неопределённости в главе 15.

<p>Нулевые колебания и квантовая дрожь</p>

Маленький сосуд, скажем сантиметрового размера, заполнили атомами — пусть это будут атомы гелия, они химически инертны, — а затем нагрели до высокой температуры. Благодаря нагреву частицы стали быстро двигаться, непрерывно сталкиваясь друг с другом и со стенками сосуда. Эта постоянная бомбардировка создаёт давление на стенки.

По обыденным меркам, атомы движутся очень быстро: их средняя скорость составляет около 1500 м/с. Теперь газ охлаждается. По мере отвода тепла энергия теряется и атомы замедляются. В конце концов, если продолжить отводить тепло, газ охладится до наинизшей возможной температуры — абсолютного нуля, или примерно минус 273,15 градуса по шкале Цельсия. Атомы, потеряв всю свою энергию, останавливаются, и давление на стенки сосуда исчезает.

По крайней мере, предполагается, что это должно произойти. Но в этом рассуждении забыли принять во внимание принцип неопределённости.

Подумайте: что в данном случае нам известно о положении любого атома? На самом деле очень много: атом заключён внутри сосуда, а сосуд имеет размер один сантиметр. Очевидно, что неопределённость его положения x меньше сантиметра. Допустим на мгновение, что все атомы действительно пришли в состояние покоя, когда мы отвели всё тепло. Каждый атом будет иметь нулевую скорость без неопределённости. Иначе говоря, станет нулём. Но это невозможно. Будь это так, произведение m•v•x тоже обратилось бы в нуль, а нуль определённо меньше постоянной Планка. Можно подойти к этому иначе: если бы скорость атома стала нулевой, его положение оказалось бы бесконечно неопределённым. Но это не так. Все атомы находятся в сосуде. Так что даже при абсолютном нуле атомы не могут полностью прекратить своё движение; они продолжают ударяться в стенки сосуда и оказывать на них давление. Это одна из неожиданных причуд квантовой механики.

Когда из системы откачано так много энергии (при температуре абсолютного нуля), физики говорят, что она находится в основном состоянии. Остаточные флуктуации в основном состоянии обычно называют нулевыми колебаниями, однако физик Брайан Грин предложил более яркое разговорное выражение — «квантовая дрожь».

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука