В этой главе я собираюсь рассказать о том, как струнные теоретики подошли к этому подсчету и как по ходу дела они получили надежное квантово-механическое обоснование энтропии Бекенштейна — Хокинга — обоснование, которое не оставляло места для потери информации. Это было крупное достижение, которое сильно продвинуло нас на пути подрыва утверждения Стивена о бесконечном количестве информации, которое способна проглотить черная дыра.
Но прежде позвольте мне объяснить, на какой точке зрения изначально стоял Герард 'т Хоофт.
Существует множество различных элементарных частиц, и, я думаю, надо честно признать, что физики не в полной мере понимают, чем одни из них отличаются от других. Но и не Задаваясь глубокими вопросами, мы можем сделать эмпирический обзор всех частиц, существование которых либо уже подтверждено экспериментально, либо предсказывается из теоретических соображений. Один из способов все их отобразить состоит в нанесении их на ось и создании своего рода спектра элементарных частиц. Будем откладывать по горизонтальной оси массу (не в масштабе), поместив слева самые легкие объекты, а вправо масса будет увеличиваться. Вертикальные черточки отмечают отдельные частицы.
На нижнем (левом) краю располагаются все знакомые нам частицы, существование которых не вызывает сомнений. Две из них не имеют массы и движутся со скоростью света — фотон и гравитон. Затем идут различные типы нейтрино, электрон, некоторые кварки, мю-лептон, еще кварки, W-бозон, Z-бозон, бозон Хиггса и тау-лептон. Названия и подробности не имеют большого значения.
На несколько больших значениях массы располагается целая коллекция частиц, существование которых лишь предполагается, но физики в большинстве своем (включая и меня) считают, что они действительно есть[139]. По причинам, которые здесь для нас не имеют значения, эти гипотетические частицы называются
Затем с массами намного больше, чем у суперпартнеров, идут
Самые неоднозначные частицы на моей диаграмме — это
Возьмем обычный кирпич. Он весит около килограмма. Мы говорим «твердый, как кирпич». Но кирпичи, которые кажутся нам твердыми, — это почти полностью пустое пространство. Приложите к ним достаточно большое давление, и их можно сжать до значительно меньшего размера. Если давление в самом деле велико, кирпич может уменьшиться до размеров булавочной головки или даже вируса. И даже тогда это будет в основном пустое пространство.
Но есть предел. Я имею в виду не практический предел, связанный с ограничениями современной технологии. Я говорю о законах природы и фундаментальных физических принципах. Каков диаметр наименьшей области, которую может занимать объект массой в один килограмм? Сразу вспоминается планковский размер, но это неправильный ответ. Объект можно сжимать, пока он не станет черной дырой с массой в один килограмм[140], но не дальше, — это самый компактный объект данной массы.
Какого же размера будет однокилограммовая черная дыра? Ответ, вероятно, окажется меньше, чем вы ожидаете. Шварцшильдовский радиус (радиус горизонта) такой черной дыры составляет около одного миллиона планковских длин. Может показаться, что это много, но в действительности это в триллион раз меньше одиночного протона. Такая черная дыра будет столь же мала, как элементарная частица, так почему нам не признать ее таковой?
'т Хоофт так и поступил. Или, по крайней мере, он сказал, что — нет важных проявлений, в которых такой объект фундаментально отличался бы от элементарной частицы.