т Хоофт также доказывал, что черные дыры не могут иметь произвольную массу: подобно обычным частицам, им доступен лишь определенный дискретный набор масс. Однако при массах больше планковской они распределены настолько плотно, что совершенно сливаются[141].
Переход от обычных частиц (или возбужденных струн) к черным дырам не столь резкий, как я изобразил на рисунке. Скорее всего, спектр возбужденных струн переходит в спектр черных дыр без отчетливой границы вблизи планковской массы. Это было предположение ’т Хоофта, и, как мы увидим, есть убедительные причины в него верить.
Алисин аэроплан — это метафора того, как внешний вид зависит от зрителя. Алиса, сидя в кокпите, не видит на горизонте ничего удивительного. Но если смотреть извне черной дыры, кажется, что у аэроплана становится все больше и больше пропеллеров, которые постепенно охватывают весь горизонт. Алисин аэроплан также служит метафорой того, как работает теория струн. Когда струна падает к горизонту, внешний наблюдатель будет видеть, как материализуется все больше и больше фрагментов струны, которые постепенно заполняют горизонт.
Наличие энтропии у черных дыр предполагает, что у них есть скрытая микроскопическая структура, подобно молекулам в ванне теплой воды. Но само по себе существование энтропии не дает никакого намека на природу «атомов горизонта», хотя и позволяет грубо оценить их количество.
В Алисином мире атомы горизонта — это пропеллеры. Возможно, и в самом деле существует теория квантовой гравитации, основанная на пропеллерах, но, я думаю, что на эту роль больше подходит теория струн, по крайней мере сегодня.
Идея о том, что струны имеют энтропию, возвращает нас к самым ранним дням теории струн. Подробности сильно математизированы, но общую идею понять легко. Начнем с простейшей струны, представляющей элементарную частицу определенной энергии. Для определенности пусть это будет фотон. Присутствие (или отсутствие) фотона — это один бит информации.
А теперь давайте что-нибудь сделаем с фотоном, предполагая, что он действительно является крошечной струной: встряхнем его, или ударим другой струной, или просто положим на горячую сковородку[142]. Подобно небольшому резиновому кольцу, он начнет вибрировать, вращаться и растягиваться. Если добавлено достаточно энергии, получается огромная запутанная мешанина — клубок шерсти, с которым поиграла кошка. Это не квантовая, а
Этот клубок шерсти вскоре становится слишком сложным, чтобы описывать его во всех деталях, но о нем по-прежнему можно получить общую информацию. Полная длина нити может составлять сотню метров. Запутанное месиво может образовать шар диаметром в пару метров. Такого рода описание будет полезно, даже если нет других подробностей. Упущенные детали — и есть скрытая информация, которая придает энтропию шару из струны.
Энергия и энтропия — все это напоминает о теплоте. И действительно, запутанные шары из струн, представляющие собой очень сильно возбужденные элементарные частицы, обладают температурой. Это также было известно с самых первых дней развития теории струн. Во многих отношениях эти запутанные возбужденные струны напоминают черные дыры. В 1993 году я всерьез задумывался: а вдруг черные дыры — не что иное, как огромные беспорядочно перепутанные шары из струн? Идея казалась захватывающей, но в деталях оказалась совершенно неверной.
Например, масса (или энергия) струны пропорциональна ее длине. Если 1 метр пряжи весит 1 грамм, то 100 метров будут весить 100 граммов, а 1000 метров — 1000 граммов.
Но энтропия струны тоже пропорциональна ее длине. Представьте себе движение вдоль струны со всеми ее поворотами и изгибами. Каждый из них — это несколько битов информации. Упрощенное изображение струны представляет ее как серию жестких звеньев решетки. Каждое звено либо горизонтальное, либо вертикальное.
Начнем с одного звена; оно может быть направлено вверх, вниз, влево или вправо. Всего четыре возможности. Это эквивалентно двум битам информации. Теперь добавим еще одно звено. Оно может продолжаться в том же направлении, свернуть под прямым углом (влево или вправо) или сделать разворот. Это еще два бита. Каждое следующее звено добавляет пару битов. Это означает, что скрытая информация пропорциональна общей длине струны.
Если и масса и энтропия запутанной струны пропорциональны ее длине, то не нужно сложной математики для понимания того, что ее энтропия пропорциональна массе:
(В математике пропорциональность обозначается тильдой «-».)