Задержимся на мгновение для перепрошивки своих представлений: вам должно стать видно, что все ангелы и демоны имеют одинаковые размеры. Это не просто маленькое ментальное упражнение, оно помогает запомнить, что Гренландия почти в точности равна по размерам Аравийскому полуострову, несмотря на то что в проекции Меркатора выглядит в восемь раз крупнее. По-видимому, в голове у Эшера эти ментальные упражнения были прошиты очень хорошо, но, попрактиковавшись, вы тоже смажете приобрести такой навык.
Теперь добавим время и сведем воедино всю картину антидеситтеровского пространства. Как обычно, отложим время по вертикальной оси. Каждый горизонтальный срез представляет собой обычное пространство в определенный момент. Рассматривайте АДС как бесконечное число слоев пространства — тонкую нарезку бесконечной салями, — которая, будучи сложена в стопку, образует пространственно-временной континуум.
Пространство в АДС причудливо искривлено, но не более чем время. Напомню, что, как мы узнали в главе 3, часы, находящиеся в разных местах, согласно общей теории относительности, часто идут в разном темпе. Например, замедление хода часов вблизи горизонта черной дыры позволяет использовать ее в качестве машины времени. Часы в АДС тоже ведут себя странно. Представьте, что у каждого эшеровского демона есть наручные часы. Если ближайшие к центру демоны оглянутся на своих чуть более далеких соседей, они заметят нечто странное: часы у тех идут примерно вдвое быстрее. Если предположить, что у демонов есть метаболизм, то у внешних соседей обмен веществ тоже будет протекать быстрее. Каждый следующий ряд будет быстрее предыдущего, пока вблизи границы часы не станут идти так быстро, что для центральных демонов все сольется в кружащийся туман.
Кривизна пространства-времени в АДС создает гравитационное поле, которое притягивает объекты к центру,
Шкатулки делаются для того, чтобы класть в них вещи, поэтому положим внутрь несколько частиц. Оказавшись внутри, они станут притягиваться к центру. Отдельная частица будет вечно колебаться вокруг него, но при наличии двух или более частиц они могут сталкиваться. Гравитация — не призрачная гравитация АДС, а обычное гравитационное взаимодействие между частицами — может заставить их собраться в сгусток. Добавление частиц будет увеличивать давление и температуру в центре, и сгусток может зажечься, образовав звезду. Добавление еще большей массы приведет в конце концов к катастрофическому коллапсу: образуется черная дыра — черная дыра, заключенная в шкатулку.
Банадос, Тейтельбойм и Занелли были не первыми, кто изучал черные дыры в АДС; эта честь принадлежит Дону Пейджу и Стивену Хокингу. Однако БТЗ открыли их простейший пример, который просто визуализировать, поскольку пространство имеет только два измерения. Вот воображаемый снимок БТЗ-черной дыры. Край черной области — это горизонт.
За одним исключением антидеситтеровские черные дыры обладают всеми свойствами обычных. Как всегда, противная сингулярность скрывается за горизонтом. Добавление массы увеличивает размеры черной дыры, приближая ее горизонт к внешней границе.
Но, в отличие от обычных черных дыр, АДС-версия не испаряется. Горизонт — это бесконечно горячая поверхность, которая постоянно испускает фотоны. Но фотонам некуда уходить. Вместо испарения в пустое пространство они падают обратно в черную дыру.
Представьте, что вы всматриваетесь в граничную точку рисунка «Предел — круг 4» и затем раздуваете рисунок так, что его край выглядит совершенно прямым.
Мы можем повторять это снова и снова, никогда не исчерпав ангелов и демонов, пока в пределе край не станет выглядеть совершенно прямым и бесконечным. Я — не Эшер и не буду пытаться рисовать его изящных созданий. Я упрощу их настолько, что демоны превратятся в квадраты, а картина станет напоминать решетку из всё уменьшающихся по мере приближения к границе квадратов. Думайте об АДС как о бесконечной кирпичной стене. При спуске вниз по стене кирпичи удваиваются в размерах с каждым новым рядом.
Конечно, в антидеситтеровском пространстве не будет реальных линий, так же как нет линий долготы и широты на поверхности Земли. Они проведены здесь лишь для того, чтобы наглядно показать, как искажаются размеры из-за кривизны пространства.