Существует три системы звукозаписи. Одна из них, механическая, при которой игла выдавливает на поверхности носителя дорожку, соответствующую форме звуковых колебаний. Этот способ применял еще Эдисон. Другой способ звукозаписи, фотографический, при котором звуковые колебания и форма луча света, падающего на киноленту, изменяются одновременно. Звук как будто фотографируется, а после проявки на пленке проявляется темная дорожка записи. Чтобы таким образом воспроизвести пленку, записанную дорожку просвечивают лучом света. Луч падает на фотоэлемент, который преобразует световые колебания в электрические. Фотографическая запись используется в звуковом кино. Первым аппаратом для такой звукозаписи был созданный в 1901 г. немецким инженером Э. Румером фотографофон. Третий способ звукозаписи – магнитный, при его использовании звуковые колебания и некоторые участки носителя намагничиваются одновременно. Они движутся через магнитное поле, которое создает магнитная головка. Через обмотку головки проходит электрический ток микрофона. При воспроизведении звука в магнитной головке возбуждаются с помощью фонограммы электрические сигналы. В 1898 г. датчанин В. Паульсен изобрел аппарат телеграфон для магнитной записи звука. С середины XX в. получила широкое распространение запись звука магнитофоном на магнитную ленту.
Зеркальная антенна
Зеркальная антенна – это антенна, в которой радиоволны отражаются от металлического зеркала и преобразуют электромагнитные волны, направленные источником. Основными элементами зеркальной антенны являются зеркало и облучатель. Металлическое зеркало выступает в роли рефлектора. Источником электромагнитных волн является элементарная антенна, облучатель зеркала. Зеркало изготовляют из сплавов алюминия, делая его сплошным или решетчатым. Форма поверхности делается такой, которая обеспечивает формирование необходимой диаграммы направленности.
Выделяют несколько типов зеркальных антенн. Это параболоидные антенны, в частности параболоид, усеченный параболоид и параболический цилиндр. Кроме этого, бывают зеркальные антенны специальной формы, сферические, плоские, угловые зеркала, зеркальнорупорные антенны.
Параболические зеркальные антенны используются в оптических, коротковолновых, сантиметровых и дециметровых диапазонах волн. Зеркальные антенны сконструированы достаточно просто, их достоинство заключается в хороших диапазонных свойствах. Параболическую зеркальную антенну составляют металлическая поверхность и слабонаправленная антенна.
Зеркальная антенна входит в состав апертурных антенн. Апертура, или раскрыв антенны, возникает при проекции зеркала на перпендикулярную лучам плоскость. Если антенна имеет размер раскрыва 2—2,5 м, то она изготавливается, как правило, по однозеркальной, или офсетной, схеме. Облучатель такой антенны выносится за зону действия основного луча. Таким образом, он не загораживает раскрыв антенны, и при малом уровне боковых лепестков достигается мощное усиление. Чем меньше антенна, тем эффективней вынос облучателя.
У многих антенн раскрыв имеет форму эллипса или другой, не круглой фигуры. В линии передачи облучателя в таких зеркальных антеннах распространяется только специфический для нее тип электромагнитной волны. В раскрыв облучателя из окружающего пространства электромагнитная волна поступает в несимметричное поле. Чтобы изменить несимметричность распределения волн, зеркало должно иметь не круглую форму. Офсетные антенны с раскрывом зеркала в форме эллипса наиболее распространены в России, особенно зеркала серии СТВ (№ 1).
Зеркальная апланатическая антенна состоит из двух зеркал, управляемого изменения диаграммы направленности. Применяется такая антенна в радионавигации и радиолокации для волн сантиметрового диапазона. Облучатель перемещается по определенной кривой, что приводит к сканированию, изменению диаграммы направления. Вспомогательное зеркало отражает на основное энергию, которая подводится к облучателю. Ширину диаграммы направленности определяет размер главного зеркала. Вспомогательное зеркало представляет собой систему проводов, которые располагаются параллельно вектору напряженности. Этот вектор принадлежит к электрической составляющей электромагнитного поля облучателя. Вектор напряженности составляющей электромагнитного поля отражается от основного зеркала. Через вспомогательное зеркало он свободно проходит, так как находится перпендикулярно его проводам.
Степень искажения диаграммы направленности определяет соотношение расстояний лучей. Если расстояния всех лучей одинаковы, то искажения получаются минимальными, за счет чего антенна становится апланатической.