Малые ЭВМ – имеется большое число «малых» применений вычислительных машин, таких как обработка данных при экспериментах, автоматизация производственного контроля изделий, управление технологическими процессами, обработка и прием данных с линий связи, управление станками и разнообразными цифровыми терминалами, малые расчетные инженерные задачи и т. д. Для этих областей использования ЭВМ общего назначения слишком дороги и велики.
Возникла необходимость в надежных, простых, небольших и, главное, дешевых ЭВМ, в которых совмещаются наглядность системы программного обеспечения и простота программирования, в отличие от сложных современных операционных систем ЭВМ общего назначения, и простота эксплуатационного обслуживания.
Развитие технологии интегральных электронных схем дало возможность создать машины, которые удовлетворяют указанным выше требованиям. Уменьшение стоимости машин и объема аппаратуры достигнуто в первую очередь за счет уменьшения длины машинного слова (12—16 разрядов вместо 32—64 в машинах общего назначения), уменьшения количества типов обрабатываемых данных по сравнению с ЭВМ общего назначения (в некоторых моделях содержатся только целые числа без знака), определенного набора команд, небольшого набора периферийных устройств и объема оперативной памяти. Подобные машины из-за своих компактных размеров получили название малых или мини-ЭВМ.
Для преодоления трудностей, которые возникают из-за короткого машинного слова, при конструировании малых ЭВМ предложен ряд решений по представлению данных, составу и структуре команд, адресации, организации обмена информацией между устройствами ЭВМ, логической структуре процессора.
У первых моделей малых ЭВМ длина слова составляла 12 разрядов. Впоследствии достижения интегральной микроэлектроники дали возможность перейти в малых машинах к шестнадцатиразрядной длине слова, что не только повысило точность вычислений и позволило построение более гибкой системы команд, но и гарантировало согласованность форматов данных с ЭВМ общего назначения.
ЭВМ отличается и более простой, чем у машин общего назначения, довольно гибкой структурой, которая получила название магистрально-модулъной, ее основой является общая магистраль (общая шина), к которой крепятся в нужных количествах и номенклатурах все устройства машины, изготавливаемых в виде конструктивно законченных модулей. Через общую магистраль (общую шину) устройства машины обмениваются информацией.
Такая структура является эффективной, а система обмена данными через общую шину – довольно динамичной только при сравнительно небольшом количестве периферийных устройств.
Универсальность использования при ограниченном наборе команд может быть осуществлена только при сравнительно высоком быстродействии машины – около 200—800 тыс. операций/с, что значительно превышает скорость работы многих ЭВМ общего назначения.
Высокое быстродействие должно дать возможность малым ЭВМ обслуживать технологические процессы в реальном времени, а также компенсировать задержку обработки данных, связанную с тем, что многие процедуры обработки при локальном объеме аппаратуры, небольшом наборе команд и отсутствии специализации машины необходимо реализовать не аппаратурными средствами, а соответствующими подпрограммами.
Гибридная вычислительная система
Гибридная вычислительная система – аналого-цифровая вычислительная машина, иначе комбинированная вычислительная машина, другими словами, комбинированный комплекс, состоящий из нескольких электронных вычислительных машин, применяющих различное представление величин (цифровое и аналоговое) и соединенных общей системой управления. В состав гибридной вычислительной системы, помимо цифровых и аналоговых машин и системы управления, как правило, входят устройства внутрисистемной связи, преобразователи представления величин и внешнее оборудование. Гибридная вычислительная система – комплекс ЭВМ, в этом ее основное отличие от гибридной вычислительной машины, получившей такое название потому, что она базируется на гибридных решающих элементах либо с применением цифровых и аналоговых элементов.
В литературе часто к гибридным вычислительным системам относят АВМ с многократным применением решающих элементов, оснащенные запоминающим устройством, АВМ с цифровым программным управлением и АВМ с параллельной логикой. Подобного рода вычислительные машины, хотя и имеют элементы, применяемые в ЦВМ, но все также сохраняют аналоговый способ представления величин и все специфические отличия и свойства АВМ. Появление гибридных вычислительных систем объясняется тем, что для решения большинства новых задач, связанных с управлением перемещающимися объектами, созданием комплексных тренажеров, оптимизацией и моделированием систем управления и др., возможности отдельно взятых ЦВМ и АВМ являются уже недостаточными.