Фотоэлектрический усилитель – усилитель постоянного напряжения или тока, действие которого базируется при освещении включенного в электрическую цепь светочувствительного элемента (фоторезистора, фотоэлемента) на увеличении тока в ней. Ток в цепи светочувствительного элемента зависит от площади освещаемой поверхности светочувствительного элемента и от яркости источника света. В соответствии с этим фотоэлектрические усилители делятся на две группы: к первой можно отнести фотоэлектрогазоразрядные, фотоэлектролюминесцентные и фотоэлектронакальные фотоэлектрические усилители, используемые в качестве фотоэлектрических элементов автоматики для фиксации и регулирования различных процессов; во вторую входят фотогальванометрические компенсационные усилители и фотоэлектрооптические усилители, применяемые в качестве элементов точных электроизмерительных устройств.
Характрон
Харатрон – электроннолучевой прибор, применяемый в устройствах отображения информации для воспроизведения топографических знаков, цифр, букв и других символов.
Сконструирован в 1941 г. в США; относится к электронно-лучевым знакопечатающим приборам мгновенного действия.
Воспроизводимые на экране характрона символы образуются при помощи трафарета – непрозрачной пластинки с последовательностью микроотверстий (от 64 до 200) в виде отображаемых символов. Данная пластина помещается между двумя отклоняющими системами на пути электронного луча к экрану: одна из них необходима для направления луча на необходимый символ трафарета, а вторая – для направления уже сформированного луча на нужное место на экране. Проходя сквозь трафарет, луч в поперечном сечении приобретает форму отверстия, в результате чего в месте падения луча на экране характрона высвечивается не точка (как в стандартных электронно-лучевых устройствах), а изображение отверстия, через которое прошел луч, т. е. изображение необходимого символа.
Цифровая вычислительная машина
Цифровая вычислительная машина преобразует величины, представленные в виде набора цифр (чисел). Элементарные преобразования чисел, которые известны с древнейших времен, – это арифметические действия (вычитание и сложение). Однако арифметические операции являются частными случаями преобразований величин, которые заданы в цифровой форме, и в современных ЦВМ они образуют только небольшую часть всего набора операций, которые машина производит над числами.
Первыми устройствами для элементарных вычислений являлись счеты (абаки): с их помощью производились арифметические операции – сложение и вычитание. Данные инструменты избавляли человека от запоминания таблицы сложения и записывания промежуточных результатов вычислений, так как в те времена бумага (либо ее аналог) и пишущие приспособления были редкостью.
Важным шагом в развитии вычислительных приборов явилось изобретение Б. Паскалем в 1641 г. суммирующей машины. В машинах Паскаля всем цифрам соответствовало конкретное положение разрядного колеса, которое разделено на 10 секторов. Сложение в подобной машине производилось поворотом колеса на определенное количество секторов.
Идея использовать вращение колеса для производства операции сложения (вычитания) высказывалась и до Паскаля (например, профессором В. Шиккардом в 1623 г.), однако главным элементом в машинах Паскаля являлся автоматический перенос единицы в старший разряд при полном обороте колеса предшествующего разряда.
Именно это позволило складывать многозначные числа без участия человека в работе механизма. Этот принцип применялся на протяжении почти трехсот лет (середина XVII – начало XX в.) при построении арифмометров (работающих от движения руки) и клавишных электрических вычислительных машин, имеющих привод от электродвигателя.
Первые вычислительные машины производили следующие простейшие операции: вычитание и сложение, перенос единицы в старший разряд при сложении (либо заем единицы при вычитании), сдвиг (перемещение каретки в арифмометрах вручную, в электрических машинах автоматически), умножение (деление) производилось последовательными сложениями (вычитаниями). При этом функции машины и человека в процессе вычислений разделялись следующим образом: машина производила арифметические операции над числами, человек следил за ходом вычислительного процесса, вводил в машину новые числа, записывал результаты (промежуточные и окончательные), искал по таблицам значения разных функций, которые входили в расчет. При подобном распределении ролей увеличение скорости выполнения машиной арифметических операций только незначительно повышало скорость вычислений в общем, так как процедуры, которые выполнялись человеком, составляли значительную часть вычислительного процесса. Поэтому, несмотря на то что техническая скорость электрических вычислительных машин в теории допускала осуществление до 1000 арифметических операций в 1 ч, на практике скорость вычислений была не более 1000 операций на протяжении 8-часового рабочего дня.