Воздушно-реактивные двигатели применяются в авиации для приведения в движение вертолетов, самолетов, крылатых ракет. Все воздушно-реактивные двигатели можно разделить на 3 типа в зависимости от способа сжатия воздуха. Первый тип – прямоточный. Сжатие воздуха в таких двигателях происходит непосредственно в воздухозаборнике за счет кинетической энергии набегающего потока воздуха. Основным недостатком такого типа двигателей является прямая зависимость силы тяги, а соответственно, и скорости от потока воздуха. Но так как на скоростях ниже скорости звука давление воздуха незначительно, то для достижения необходимой рабочей скорости надо использовать различные ускорители. Преимущества же заключаются в следующем:
1) двигатель гораздо экономичнее в сравнении с ракетными двигателями, потому что окислителем служит кислород из окружающего воздушного пространства;
2) двигатель обладает преимуществом перед турбореактивным двигателем в максимальной высоте подъема и скорости передвижения;
3) двигатель конструктивно прост и не имеет движущихся элементов.
В настоящее время на стадии испытаний находится модернизированный прямоточный воздушно-реактивный двигатель. Его планируется использовать при достижении гиперзвуковых скоростей. Основным преимуществом гиперзвукового прямоточного воздушно-реактивного двигателя в сравнении с обычной модификацией будет являться сверхзвуковая скорость сгорания топлива.
В пульсирующем воздушно-реактивном двигателе топливо и воздух подаются с некоторой периодичностью. Конструктивно он отличается наличием входных клапанов в камере сгорания и длинного сопла цилиндрической формы. Подача рабочей смеси происходит через входные клапаны, после чего происходит поджиг смеси при помощи свечи зажигания, установленной в камере сгорания. Клапан закрывается в результате образования избыточного давления в камере сгорания. Наиболее известным аппаратом, использовавшим в своей конструкции пульсирующий воздушнореактивный двигатель, является немецкая ракета «Фау-1». В современной авиации практически не применяется из-за низкой экономичности по сравнению с газотурбинными двигателями. Используется для силовых установок самолетов-мишеней. Турбореактивный воздушно-реактивный двигатель в своей конструкции имеет компрессор, привод которого идет непосредственно от газовой турбины. Это дает необходимый коэффициент сжатия воздуха независимо от скорости полета, что является явным преимуществом в сравнении с прямоточными двигателями. Преимуществом является большая скорость истечения газов и создания в результате большой силы тяги.
Вспомогательный ракетный двигатель
Вспомогательный ракетный двигатель – разновидность ракетных двигателей, используемых для решения каких-либо конкретных задач. Отличается небольшими размерами и маленьким весом, что позволяет добавить полезного груза на борт и сократить длину разбега на взлете.
Вспомогательный ракетный двигатель характеризуется значительно меньшим временем работы и высоким отношением тяги к начальной массе летательного аппарата. В качестве вспомогательных часто применяют твердотопливные ракетные двигатели длительностью работы до нескольких секунд и дающих тягу в несколько десятков килоньютонов, значительно реже применяются жидкостные ракетные двигатели. Основными областями применения считаются самолеты и ракеты, в том числе высотные исследовательские и крылатые ракеты. Если в ракете-носителе ступени соединены по пакетной схеме, то двигатель первых ступеней ракет-носителей часто называют стартовым или вспомогательным ракетным двигателем.
Высокочастотный ракетный двигатель
Высокочастотный ракетный двигатель – разновидность электротермического ракетного двигателя.
Газовый ракетный двигатель
Газовый ракетный двигатель – ракетный двигатель, который использует в качестве рабочего тела газ. Газ сохраняют под высоким давлением либо могут получать испарением жидких или твердых веществ. Конструктивно может быть предусмотрена возможность подогрева газа за счет электрической энергии или какого-либо другого источника тепловой энергии.
Обычно находит свое применение в качестве двигателей малых тяговых мощностей и используется в системах ориентации, системах управления пространственным положением космического аппарата, где не требуется большая мощность двигательной установки.
Газогенератор
Газогенератор (от лат.
В первых жидкостных ракетных двигателях, созданных в 40—60-х гг. ХХ в., использовались парогазогенераторы, которые вырабатывали смесь из водяного пара и кислорода. Смесь могла быть получена за счет каталитического разложения концентрированного водного раствора перекиси водорода.