Благодаря таким исследованиям стал возможным более эффективный сбор информации о поверхности суши и океана с целью рационального использования природных ресурсов. На основе первых данных о возможных перспективах фотосъемки постепенно была создана специальная спутниковая система, которая позволила оперативно собирать информацию различного рода. С помощью фотоспутников была значительно облегчена навигация судов в холодных морях. Для составления прогнозов о поведении льда и айсбергов необходима наиболее полная информация о температурах воздуха и моря, выпадении осадков, ветрах и течениях. Мониторинг такой информации в короткие сроки может обеспечить система спутниковой фотосъемки.
Если говорить о других странах, то необходимо упомянуть Индию, первый экспериментальный спутник наблюдения которой был запущен в 1979 г. при помощи советской ракеты-носителя. Одной из основных задач индийского спутника была функция прогнозирования начала муссонов, с которыми связана пересадка риса. Кроме этого, в задачи экспериментального спутника входили исследования возобновляемых и изменчивых во времени природных ресурсов, таких как леса, реки, прибрежная зона, которая подвергается эрозии, зоны затопления и возделываемая земля. Франция в 1978 г. объявила о введении в действие программы «СПОТ», которая являлась долгосрочной и предполагала проведение инвентаризации всех невозобновляемых и медленно возобновляемых ресурсов. Таким ресурсами являются минералы, ископаемые запасы топлива, запас пресной воды. В том числе эта программа предполагала мониторинг состояния сельского хозяйства и атмосферы. Также подразумевалась возможность отслеживать изменения в области океанографии, климатологии, а также следить за опасными природными явлениями, такими как наводнения, штормы, землетрясения и извержения вулканов.
Электрический ракетный двигатель
Электрический ракетный двигатель – ракетный двигатель, принцип действия которого основан на использовании, для создания тяги электрической энергии, получаемой от энергоустановки, находящейся на борту космического аппарата. Основная сфера применения – небольшая коррекция траектории, а также ориентация в пространстве космических аппаратов. Комплекс, состоящий из электрического ракетного двигателя, системы подачи и хранения рабочего тела, системы автоматического управления и системы электропитания, называется электроракетной двигательной установкой.
Упоминание о возможности использования в ракетных двигателях электрической энергии для создания тяги встречается в трудах К. Э. Циолковского. В 1916—1917 гг. были проведены первые эксперименты Р. Годдардом, и уже в 30-х гг. XX в. под руководством В. П. Глушко был создан один из первых электрических ракетных двигателей.
В сравнении с другими ракетными двигателями электрические позволяют увеличить срок существования космического аппарата, и при этом значительно снижается масса двигательной установки, что позволяет увеличить полезную нагрузку, получить наиболее полные массогабаритные характеристики. Используя электрические ракетные двигатели, можно сократить длительность полета к дальним планетам, а также сделать полет к какой-либо планете возможным.
В середине 60-х гг. ХХ в. активно велись испытания электрических ракетных двигателей на территории СССР и США, а уже в 1970-х гг. они использовались как штатные двигательные установки.
В России классификация идет по механизму ускорения частиц. Можно выделить следующие типы двигателей: электротермические (электронагревные, электродуговые), электростатические (ионные, в том числе коллоидные, стационарные плазменные двигатели с ускорением в анодном слое), сильноточные (элекромагнитные, магнитодинамические) и импульсные двигатели.
В качестве рабочего тела возможно применение любых жидкостей и газов, а также их смеси. Для каждого типа электродвигателя необходимо применять соответствующие рабочие тела для достижения наилучших результатов. Для электротермических традиционно применяется аммиак, в работе электростатических двигателей используется ксенон, в сильноточных – литий, а для импульсных наиболее эффективным рабочим телом является фторопласт.
Одним из главных источников потерь является энергия, затрачиваемая на ионизацию на единицу ускоренной массы. Преимуществом электрических ракетных двигателей является малый массовый расход рабочего тела, а также высокая скорость истечения ускоренного потока частиц. Верхняя граница скорости истечения теоретически находится в пределах скорости света.
В настоящее время для различных типов двигателей скорость истечения колеблется в пределах от 16 до 60 км/с, хотя перспективные модели смогут дать скорость истечения потока частиц до 200 км/с.