Еще одной логической игрой являются шахматы. Для того чтобы иметь хорошие шансы на победу, машина должна просчитывать все возможные ходы, а затем выбрать наилучший. Но это может показаться невозможным, потому что таких ходов могут быть миллионы. За то время было создано большое количество машин, которые могут играть в шахматы. А в 1974 г. проводился международный турнир между машинами. В нем выиграла советская машина с именем «Каисса». Известный факт проигрыша Каспарова компьютеру IBM с шахматной программой Deep Blue подтверждает потенциал искусственного интеллекта. Конечно, машина была довольно мощной (она состояла из 256 процессоров, каждый имел по 4 Гб памяти на жестком диске и по 128 Мб оперативной памяти). Такая машина могла просчитывать до 100 млн различных ходов в секунду.
ИИ может применяться не только для проведения игр с живыми людьми. Например, при его помощи создаются разнообразные переводчики текстов с одного языка на другой.
Принцип работы таких программ заключается в основных правилах и принципах перевода делового и разговорного текстов. Но все-таки подобные системы еще не доведены до совершенства.
Еще одной сферой применения ИИ является перцептрон – прибор для распознавания объектов.
Принцип его работы состоит из двух фаз: обучения и распознавания. В первой фазе машине предлагается запомнить некоторые объекты и класс, к которому они относятся. Вторая фаза заключается в том, что прибору предлагаются новые объекты (которые в первой фазе не использовались), и он должен распознать их и по возможности правильно определить класс.
Огромное значение ИИ имеет в робототехнике и кибернетике, практически ни один робот не обходится без его использования.
Первые роботы с ИИ появились в 1960-х гг. В те времена были простейшие модели, которые выполняли однотипную работу. Например, в 1969 г. в Японии был разработан робот, предназначенный для сборочно-монтажных работ. Такой робот имел всего 6 степеней свободы, а сейчас создаются роботы до 30 степеней свободы! Память такого робота составляла всего 32 000 слов. А экран был поделен на 64 × 64 ячейки. Робот распознавал объекты, которые ограничены цилиндрическими поверхностями либо плоскостями. Если объект был не полностью виден на экране, то робот поворачивался, захватывал объект, используя сенсоры, и производил необходимые действия.
Еще один из роботов того времени под названием ТАИР (транспортный автономный интегральный робот) был создан в Киеве (лаборатория, где больше всего внимания уделяли распознаванию речи и изображений). Он состоял из 3-колесного шасси, на котором находился блок управления и сенсорная система. Он был оснащен компасом, двумя маяками, датчиками наклона тележки.
Отличительной особенностью этого робота от всех являлось то, что в нем отсутствовал компьютер. ТАИР был оснащен нейроподобной сетью, реализующей различные алгоритмы: перемещения, обработки информации сенсоров, планирование поведения.
Среди крупномасштабных систем можно отметить.
1. MICIN – система для диагностики инфекционных заболеваний. Проводит сканирование организма больного и выводит информацию о состоянии здоровья. В базе данных имеется около 450 правил.
2. DENDRAL – система распознавания химических структур. Пользователь должен вводить некоторые данные спектрометрии и некоторую информацию о веществе, а машина выводит диагноз химической структуры вещества.
Существует много подходов для создания систем ИИ. Нет такого подхода, который мог бы превосходить другие, также нельзя считать, что один из них является ошибочным, а другой – правильным, потому что в данное время нет наиболее полной системы ИИ.
Можно выделить четыре главных подхода для построения систем ИИ. Первый из них – логический. Этот подход, возможно, возник вследствие того, что все в жизни имеет 2 состояния: работает (включено) и не работает (выключено). Например, компьютеры созданы на основе такой системы, которая называется битовой – от слова бит. Основой этого подхода является алгебра логики, или Булева алгебра (в честь математика Буля). Любой из программистов обязан ее знать, иначе даже самые простейшие операции будут недоступны. Суть этой алгебры – не только выяснение истинно ли выражение или нет; также она применяется для исчисления предикатов, причем алгебра дополнена предметными символами, отношениями между ними, кванторами существования и всеобщности.
В основном все системы ИИ, которые используют этот подход, представляются в виде машин, способных доказывать теоремы. Все исходные данные хранятся в базе данных, представленные аксиомами, а правила логического вывода этих теорем – как отношения между этими аксиомами. Каждая из таких машин имеет блок генерации цели, а система каким-либо способом пытается выполнить (доказать) эту цель как теорему.