Читаем Большая книга занимательных наук полностью

Достигаем ли мы здесь крайних пределов пространственной малости, за которые не приходится переступать даже физику с его изощренными приемами измерений? Еще не особенно давно думали так; но теперь установлено, что атом – целый мир, состоящий из гораздо более мелких частиц и являющийся ареной действия могущественных сил. Например, атом водорода состоит из центрального ядра и быстро обращающегося вокруг него электрона. Не входя в другие подробности, скажем только, что поперечник электрона измеряется биллионными долями миллиметра. Другими словами, поперечник электрона почти в миллион раз меньше поперечника атома. Если же пожелаете сравнить размеры электрона с размерами пылинки, то расчет покажет вам, что электрон меньше пылинки примерно во столько же раз, во сколько пылинка меньше – чего бы вы думали? – земного шара!

Вы видите, что атом – лилипут среди лилипутов – является в то же время настоящим исполином по сравнению с электроном, входящим в его состав, – таким же исполином, каким вся Солнечная система является по отношению к земному шару.

Можно составить следующую поучительную лестницу, в которой каждая ступень является исполином по отношению к предыдущей ступени и лилипутом по отношению к последующей:

электрон

атом

пылинка

дом

земной шар

Солнечная система

расстояние до Полярной звезды

Млечный Путь.

Каждый член этого ряда примерно в четверть миллиона раз больше предыдущего и во столько же раз меньше последующего (имеются в виду линейные размеры (а не объемы), то есть поперечник атома, диаметр Солнечной системы, высота или длина дома и т. п.). Ничто не доказывает так красноречиво всю относительность понятий «большой» и «малый», как эта табличка. В природе нет безусловно большого или безусловно малого предмета. Каждая вещь может быть названа и подавляюще огромной и исчезающе малой, в зависимости от того, как на нее взглянуть, с чем ее сравнить.

Сверхисполин и сверхлилипут

Наши беседы о великанах и карликах из мира чисел были бы неполны, если бы мы не рассказали читателю об одной изумительной диковинке этого рода – диковинке, правда, не новой, но стоящей дюжины новинок. Чтобы подойти к ней, начнем со следующей, на вид весьма незамысловатой задачи:

Какое самое большое число можно написать тремя цифрами, не употребляя никаких знаков действия?

Хочется ответить: 999, – но, вероятно, вы уже подозреваете, что ответ другой, иначе задача была бы чересчур проста. И действительно, правильный ответ пишется так:

Выражение это означает: «девять в степени девять в девятой степени» (на языке математики такое выражение называется «третьей сверхстепенью девяти»). Другими словами: нужно составить произведение из стольких девяток, сколько единиц в результате умножения:

9 × 9 × 9 × 9 × 9 × 9 × 9 × 9 × 9.

Достаточно только начать вычисление, чтобы ощутить огромность предстоящего результата. Если у вас хватит терпения выполнить перемножение девяти девяток, вы получите число:

387 420 489.

Главная работа только начинается: теперь нужно найти

9387420489

то есть произведение 387 420 489 девяток. Придется сделать круглым счетом 400 миллионов умножений…

У вас, конечно, не будет времени довести до конца подобное вычисление. Но я лишен возможности сообщить вам готовый результат – по трем причинам, которые нельзя не признать уважительными. Во-первых, число это никогда и никем еще не было вычислено (известен только приближенный результат). Во-вторых, если бы даже оно и было вычислено, то, чтобы напечатать его, понадобилось бы не менее тысячи таких книг, как эта, потому что число наше состоит из 369 693 061 цифры; набранное обыкновенным шрифтом, оно имело бы в длину 1000 км – от Ленинграда до Горького. Наконец, если бы меня снабдили достаточным количеством бумаги и чернил, я и тогда не мог бы удовлетворить вашего любопытства. Вы легко можете сообразить почему: если я способен писать, скажем, без перерыва по две цифры в секунду, то в час я напишу 7200 цифр, а в сутки, работая непрерывно день и ночь, – не более 172 800 цифр. Отсюда следует, что, не отрываясь ни на секунду от пера, трудясь круглые сутки изо дня в день без отдыха, я просидел бы за работой не менее 7 лет, прежде чем написал бы это число…

Могу сообщить вам, что это число начинается цифрами 428 124773 175 747 048 036 987 118 и кончается 89. Что находится между этим началом и концом – неизвестно. А ведь там 369 693 061 цифра!..

Вы видите, что уже число цифр нашего результата невообразимо огромно. Как же велико само число, выражаемое этим длиннейшим рядом цифр? Трудно дать хотя бы приблизительное представление о его громадности, потому что такого множества вещей, считая даже каждый электрон за отдельную вещь, нет в целой Вселенной!

Архимед вычислил некогда, сколько песчинок заключал бы в себе мир, если бы весь он, до неподвижных звезд, наполнен был тончайшим песком. У него получился результат, не превышающий единицы с 63 нолями. Наше число состоит не из 64, а почти из 370 миллионов цифр – следовательно, оно неизмеримо превышает огромное число Архимеда.

Перейти на страницу:

Похожие книги

Правила игры Го
Правила игры Го

Новые правила игры Го составлены в лучших традициях русской и японской школ Го. Соавтор первых российских учебников по игре Го «Мыслить и побеждать: игра Го для начинающих» и «Русский Учитель японского Го» Михаил Емельянов на страницах Правил Го обучает основам игры, раскрывает нюансы подготовки к поединку и поведения за игровой доской, рассказывает малоизвестные факты из истории этой древнейшей игры. Впервые в России правила игры Го публикуются полностью, без изъятий и сокращений, дополненные описанием традиционного этикета Го. В качестве иллюстраций используются уникальные фотографии, на которых Мастера Русской Школы Го и Стратегии показывают как правильно играть в Го: каким должен быть игровой набор, стиль одежды, дизайн игрового зала, а также точная посадка, положение рук и головы. Правила игры Го — это самостоятельное, оригинальное издание, не являющееся копией или перепечаткой других книг по игре Го.

Михаил Геннадьевич Емельянов

Развлечения / Руководства / Дом и досуг / Словари и Энциклопедии