Индусский царь не в состоянии был выдать подобной награды. Но он легко мог бы, будь он силен в математике, освободиться от столь обременительного долга. Для этого нужно было лишь предложить Сете самому отсчитать себе зерно за зерном всю причитавшуюся ему пшеницу.
В самом деле: если бы Сета, принявшись за счет, вел его непрерывно день и ночь, отсчитывая по зерну в секунду, он в первые сутки отсчитал бы всего 86 400 зерен. Чтобы отсчитать миллион зерен, понадобилось бы не менее 10 суток неустанного счета. Один кубический метр пшеницы он отсчитал бы примерно в полгода: это дало бы ему всего 5 четвертей[79]
. Считая непрерывно в течение 10 лет, он отсчитал бы себе не более 100 четвертей. Вы видите, что, посвятив счету даже весь остаток своей жизни, Сета получил бы лишь ничтожную часть потребованной им награды.Перекладывание монет
В детстве старший брат показал мне, помню, занимательную игру с монетами. Поставив рядом три блюдца, он положил в крайнее блюдце стопку из 5 монет: вниз рублевую, на нее – 50-копеечную монету, выше – 20-копеечную, далее – 15-копеечную, на самый верх – 10-копеечную[80]
.– Нужно перенести эти монеты на третье блюдце, соблюдая следующие три правила. Первое правило: за один раз перекладывать только одну монету. Второе: никогда не класть большей монеты на меньшую. Третье: можно временно класть монеты и на среднюю тарелку, соблюдая оба правила, но к концу игры все монеты должны очутиться на третьем блюдце в первоначальном порядке. Правила, как видишь, не сложные. А теперь приступай к делу.
Я принялся перекладывать. Положил 10-копеечную монету на третье блюдце, 15-копеечную на среднее и запнулся. Куда положить 20-копеечную? Ведь она крупнее и 10-копеечной, и 15-копеечной.
– Ну что же? – выручил меня брат. – Клади 10-копеечную на среднее блюдце, поверх 15-копеечной. Тогда для 20-копеечной освободится третье блюдце.
Я так и сделал. Но дальше – новое затруднение. Куда положить 50-копеечную монету? Впрочем, я скоро догадался: перенес сначала 10-копеечную на первое блюдце, 15-копеечную на третье и затем 10-копеечную тоже на третье. Теперь 50-копеечную монету можно положить на свободное среднее блюдце. Дальше, после длинного ряда перекладываний, мне удалось перенести также рублевую монету с первого блюдца и, наконец, собрать всю кучку монет на третьем блюдце.
– Сколько же ты проделал всех перекладываний? – спросил брат, одобрив мою работу.
– Не считал.
– Давай сосчитаем. Интересно же знать, каким наименьшим числом ходов можно достигнуть цели. Если бы стопка состояла не из 5, а только из 2 монет —
15-копеечной и 10-копеечной, то сколько понадобилось бы ходов?
– Три: 10-копеечную на среднее блюдце, 15-копеечную – на третье и затем 10-копеечную на третье блюдце.
– Правильно. Прибавим теперь еще монету – 20-копеечную – и сосчитаем, сколькими ходами можно перенести стопку из этих монет. Поступаем так: сначала последовательно переносим меньшие две монеты на среднее блюдце. Для этого нужно, как мы уже знаем, 3 хода. Затем перекладываем 20-копеечную монету на свободное третье блюдце – 1 ход. А тогда переносим обе монеты со среднего блюдца тоже на третье – еще 3 хода. Итого всех ходов
3 + 1 + 3 = 7.
– Для четырех монет число ходов позволь мне сосчитать самому. Сначала переношу 3 меньшие монеты на среднее блюдце – 7 ходов; потом 50-копеечную на третье блюдце – 1 ход и затем снова три меньшие монеты на третье блюдце – еще 7 ходов. Итого
7 + 1 + 7= 15.
– Отлично. А для пяти монет?
– 15 + 1 + 15 = 31, – сразу сообразил я.
– Ну вот ты и уловил способ вычисления. Но я покажу тебе, как можно его еще упростить. Заметь, что полученные нами числа 3, 7,15, 31 – все представляют собой двойку, умноженную на себя один или несколько раз, но без единицы. Смотри.
И брат написал табличку:
3 = 2 x 2–1
7=2 х 2 х 2–1
15 = 2 x 2 x 2 x 2–1
31 = 2 x 2 x 2 x 2 x 2–1.
– Понимаю: сколько монет перекладывается, столько раз берется двойка множителем, а затем отнимается единица. Я мог бы теперь вычислить число ходов для любой стопки монет. Например, для 7 монет:
2 х 2 х 2 х 2 х 2 х 2 х 2–1 = 128-1 = 127.
– Вот ты и постиг эту старинную игру. Одно только практическое правило надо тебе еще знать: если в стопке число монет нечетное, то первую монету перекладывают на третье блюдце; если четное – то на среднее блюдце.
– Ты сказал: старинная игра. Разве не сам ты ее придумал?