Читаем Большая книга занимательных наук полностью

Теперь мы знаем, что и архимедово число 31/7 не вполне точно выражает отношение длины окружности к диаметру Теоретически доказано, что отношение это вообще не может быть выражено какой-либо точной дробью. Мы можем написать его лишь с тем или иным приближением, впрочем, далеко превосходящим точность, необходимую для самых строгих требований практической жизни. Математик XVI века Лудольф в Лейдене имел терпение вычислить  π с 35 десятичными знаками и завещал вырезать это значение на своем могильном памятнике[53] (рис. 16).

Рис. 16. Математическая надгробная надпись


Вот оно: 3,14159265358979323846264338327950288…

Некий Шенке в 1873 г. опубликовал такое значение числа я, в котором после запятой следовало 707 десятичных знаков! Такие длинные числа, приближенно выражающие значение я, не имеют ни практической, ни теоретической ценности. Только от безделья да в погоне за дутыми «рекордами» могло в наше время возникнуть желание «переплюнуть» Шенкса: в 1946–1947 гг. Фергюсон (Манчестерский университет) и независимо от него Ренч (из Вашингтона) вычислили 808 десятичных знаков для числа  π и были польщены тем, что в вычислениях Шенкса обнаружили ошибку начиная с 528 знака.

Если бы мы пожелали, например, вычислить длину земного экватора с точностью до 1 см, предполагая, что знаем длину его диаметра точно, то для этого нам вполне достаточно было бы взять всего 9 цифр после запятой в числе π . А взяв вдвое больше цифр (18), мы могли бы вычислить длину окружности, имеющей радиусом расстояние от Земли до Солнца, с погрешностью не свыше 0,0001 мм (в 100 раз меньше толщины волоса!).

Чрезвычайно ярко показал абсолютную бесполезность даже первой сотни десятичных знаков числа п наш соотечественник, математик Граве. Он подсчитал, что если представить себе шар, радиус которого равен расстоянию от Земли до Сириуса, т. е. числу километров равному 132 с десятью нулями: 132 · 1010, наполнить этот шар микробами, полагая в каждом кубическом миллиметре шара по одному биллиону микробов, затем всех этих микробов расположить на прямой линии так, чтобы расстояние между каждыми двумя соседними микробами снова равнялось расстоянию от Сириуса до Земли, то, принимая этот фантастический отрезок за диаметр окружности, можно было бы вычислить длину получившейся гигантской окружности с микроскопической точностью – до 

мм, беря 100 знаков после запятой в числе π.


Правильно замечает французский астроном Араго, что «в смысле точности мы ничего не выиграли бы, если бы между длиною окружности и диаметром существовало отношение, выражающееся числом вполне точно».

Для обычных вычислений с числом  π вполне достаточно запомнить два знака после запятой (3,14), а для более точных – четыре знака (3,1416: последнюю цифру берем 6 вместо 5 потому, что далее следует цифра, большая 5).

Небольшие стихотворения или яркие фразы дольше остаются в памяти, чем числа, поэтому для запоминания какого-либо числового значения  π придумывают особые стихотворения или отдельные фразы. В произведениях этого вида «математической поэзии» слова подбирают так, чтобы число букв в каждом слове последовательно совпадало с соответствующей цифрой числа π.

Известно стихотворение на английском языке – в 13 слов, следовательно, дающее 12 знаков после запятой в числе π ; на немецком языке – в 24 слова, а на французском языке в 30 слов[54] (а есть и в 126 слов!).

Они любопытны, но слишком велики, тяжеловесны. Среди учеников Е.А. Терского – учителя математики одной из средних школ Москвы – пользуется популярностью придуманная им следующая строфа:

А одна из его учениц – Эся Чериковер – со свойственной нашим школьникам находчивостью сочинила остроумное, слегка ироническое продолжение:

В целом получается такое двустишие из 12 слов:


«Это я знаю и помню прекрасно,

Пи многие знаки мне лишни, напрасны».

Автор этой книги, не отваживаясь на придумывание стихотворения, в свою очередь предлагает простую и тоже вполне достаточную прозаическую фразу: «Что я знаю о кругах?» – вопрос, скрыто заключающий в себе и ответ: 3,1416.

Квадратура круга

Не может быть, чтобы читатель никогда не слыхал о «квадратуре круга» – о той знаменитейшей задаче геометрии, над которой трудились математики еще 20 веков назад. Я даже уверен, что среди читателей найдутся и такие, которые сами пытались разрешить эту задачу. Еще больше, однако, наберется читателей, которые недоумевают, в чем собственно кроется трудность этой классической неразрешимой задачи. Многие, привыкшие повторять с чужого голоса, что задача о квадратуре круга неразрешима, не отдают себе ясного отчета ни в сущности самой задачи, ни в трудности ее разрешения.

В математике есть немало задач, гораздо более интересных и теоретически и практически, нежели задача о квадратуре круга. Но ни одна не приобрела такой популярности, как эта проблема, давно вошедшая в поговорку. Два тысячелетия трудились над ней и выдающиеся математики-профессионалы и несметные толпы любителей.

Перейти на страницу:

Похожие книги

Правила игры Го
Правила игры Го

Новые правила игры Го составлены в лучших традициях русской и японской школ Го. Соавтор первых российских учебников по игре Го «Мыслить и побеждать: игра Го для начинающих» и «Русский Учитель японского Го» Михаил Емельянов на страницах Правил Го обучает основам игры, раскрывает нюансы подготовки к поединку и поведения за игровой доской, рассказывает малоизвестные факты из истории этой древнейшей игры. Впервые в России правила игры Го публикуются полностью, без изъятий и сокращений, дополненные описанием традиционного этикета Го. В качестве иллюстраций используются уникальные фотографии, на которых Мастера Русской Школы Го и Стратегии показывают как правильно играть в Го: каким должен быть игровой набор, стиль одежды, дизайн игрового зала, а также точная посадка, положение рук и головы. Правила игры Го — это самостоятельное, оригинальное издание, не являющееся копией или перепечаткой других книг по игре Го.

Михаил Геннадьевич Емельянов

Развлечения / Руководства / Дом и досуг / Словари и Энциклопедии