Теперь понятны те неожиданности, с которыми мы сталкивались при решении предыдущих задач: для двоек и троек надо было брать одно расположение, для четверок и больших чисел – другое.
Четырьмя единицами
ЗАДАЧА
Четырьмя единицами, не употребляя никаких знаков математических действий, написать возможно большее число.
РЕШЕНИЕ
Естественно приходящее на ум число – 1111 – не отвечает требованию задачи, так как степень
1111
во много раз больше. Вычислять это число десятикратным умножением на 11 едва ли у кого хватит терпения. Но можно оценить его величину гораздо быстрее с помощью логарифмических таблиц.
Число это превышает 285 миллиардов и, следовательно, больше числа 1111 в 25 с лишним млн. раз.
Четырьмя двойками
ЗАДАЧА
Сделаем следующий шаг в развитии задач рассматриваемого рода и поставим наш вопрос для четырех двоек.
При каком расположении четыре двойки изображают наибольшее число?
РЕШЕНИЕ
Возможны 8 комбинаций:
Какое же из этих чисел наибольшее?
Займемся сначала верхним рядом, т. е. числами в двухъярусном расположении.
Первое – 2222, – очевидно меньше трех прочих. Чтобы сравнить следующие два —
2222 и 2222,
преобразуем второе из них:
2222 = 22211 = (222)11 = 48411.
Последнее число больше, нежели 2222, так как и основание, и показатель у степени 48411 больше, чем у степени 2222.
Сравним теперь 2222 с четвертым числом первой строки – с 2222. Заменим 2222 большим числом 3222 и покажем, что даже это большее число уступает по величине числу 2222. В самом деле,
3222=(25)22= 2110
– степень меньшая, нежели 2222.
Итак, наибольшее число верхней строки – 2222. Теперь нам остается сравнить между собой пять чисел – сейчас полученное и следующие четыре:
Последнее число, равное всего 216, сразу выбывает из состязания. Далее, первое число этого ряда, равное 224 и меньшее, чем 324 или 220, меньше каждого из двух следующих. Подлежат сравнению, следовательно, три числа, каждое из которых есть степень 2. Больше, очевидно, та степень 2, показатель которой больше. Но из трех показателей
222,484 и 220+2 (=210·2·22 ≈ 106·4)
последний – явно наибольший.
Поэтому наибольшее число, какое можно изобразить четырьмя двойками, таково:
Не обращаясь к услугам логарифмических таблиц, мы можем составить себе приблизительное представление о величине этого числа, пользуясь приближенным равенством
210 ≈ 1000.
В самом деле,
Итак, в этом числе – свыше миллиона цифр.
Искусство отгадывать числа
Каждый из вас, несомненно, встречался с «фокусами» по отгадыванию чисел. Фокусник обычно предлагает выполнить действия следующего характера: задумай число, прибавь 2, умножь на 3, отними 5, отними задуманное число и т. д. – всего пяток, а то и десяток действий. Затем фокусник спрашивает, что у вас получилось в результате, и, получив ответ, мгновенно сообщает задуманное вами число.
Секрет «фокуса», разумеется, очень прост, и в основе его лежат все те же уравнения.
Пусть, например, фокусник предложил вам выполнить программу действий, указанную в левой колонке следующей таблицы:
Затем фокусник просит вас сообщить окончательный результат и, получив его, моментально называет задуманное число. Как он это делает?
Чтобы понять это, достаточно обратиться к правой колонке таблицы, где указания фокусника переведены на язык алгебры. Из этой колонки видно, что если вы задумали какое-то число
Пусть, например, вы сообщили фокуснику, что получилось 33. Тогда фокусник быстро решает в уме уравнение
25, то фокусник в уме проделывает действия 25 – 1 = 24, 24:4 = 6 и сообщает вам, что вы задумали 6.
Как видите, все очень просто: фокусник заранее знает, что надо сделать с результатом, чтобы получить задуманное число.
Поняв это, вы можете еще более удивить и озадачить ваших приятелей, предложив им
– Я задумал число, умножил его на 2, прибавил к результату 3, затем прибавил задуманное число; теперь я прибавил 1, умножил на 2, отнял задуманное число, отнял 3, еще отнял задуманное число, отнял 2. Наконец, я умножил результат на 2 и прибавил 3.
Решив, что уже совершенно вас запутал, он с торжествующим видом сообщает вам:
– Получилось 49.
К его изумлению вы немедленно сообщаете ему, что он задумал число 5.