На рис. 2
показан общий вид регулирующего блока А. у. с., содержащего наибольшее количество унифицированных узлов и деталей. Большинство блоков строится по этому типу.Его принципиальную схему см. на рис. 3. Работа блока основана на компенсации усилий, возникающих на мембранах от давления сжатого воздуха, подводимого к камерам блока — пространствам, образованным стенками шайб и мембранами. Регулирующий блок — изодромный (пропорционально-интегральный) регулятор с настройкой диапазона дросселирования от 10 до 250% и времени изодрома от 3 сек до 100 мин. Блок состоит из узлов: усилителя мощности (камеры А, Б, В и Г), элемента сравнения (камеры Е и Ж), обратной связи (камеры Д и К), элемента изодрома (камеры Л и М) и отключающего реле (камеры Н, О и П). К блоку подводится сжатый воздух из линии питания, от измерительного блока (датчика) и от задающего устройства. При отклонении регулируемого параметра от заданного значения возникает разность давлений воздуха на входах блока, в результате чего нарушается баланс сил, действующих на мембраны 1, 2, 3, скрепленные общим штоком 4. В зависимости от направления результирующего усилия мембранный узел перемещается вверх или вниз. При этом заслонка 5, находящаяся на нижнем конце штока 4, открывает или закрывает сопло 6, вследствие чего давление сжатого воздуха, поступающего из линии питания блока через постоянное сопротивление, изменяется. Изменение этого давления усиливается усилителем и поступает в канал 7 и выходную линию блока, связанную с линией исполнительного механизма. Отрицательная обратная связь реализуется подачей сжатого воздуха в камеру Д. Значение коэффициента усиления регулятора (диапазона дросселирования) устанавливается настройкой дросселя 8, регулирующего поступление сжатого воздуха из канала 7 в камеру положительной обратной связи К. Элемент изодрома состоит из глухой камеры М с дросселем 11 и проточной камеры Л, в которой давление сжатого воздуха всегда следит за давлением в камере М. Время изодрома устанавливается дросселем 11, от степени открытия которого зависит время заполнения камеры М. Дроссели 8 и 11 представляют собой игольчатые клапаны. Для перехода с автоматического управления на ручное служит отключающее реле, в котором при подаче воздуха питания в камеру П мембрана 9 перекрывает сопло 10, отсоединяя выходную линию регулятора от линии исполнительного механизма. Лит.:
Березовец Г. Т., Малый А. Л., Наджафов Э. М., Приборы пневматической агрегатной унифицированной системы и их использование для автоматизации производственных процессов, 3 изд., М.. 1965; Прусенко В. С., Пневматические регуляторы, М.— Л., 1966. Г. Т. Березовец.
Рис. 3. Принципиальная схема регулирующего блока.
Рис. 1. Блок контроля.
Рис. 2. Регулирующий блок 4РБ—32А.
Агрегатные состояния
Агрега'тные состоя'ния
вещества, состояния одного и того же вещества (например, воды, железа, серы), переходы между которыми сопровождаются скачкообразными изменениями свободной энергии, энтропии, плотности и других основных физических свойств. Так, вода при нормальном давлении 101 325н/м2 = 760 мм рт. ст. и при 0°С кристаллизуется в лёд, а при 100°С кипит и превращается в пар. Следовательно, вода может существовать в твёрдом, жидком и газообразном А. с. К трём указанным А. с. вещества часто причисляют ещё плазму. Существование нескольких А. с. обусловлено различиями в характере теплового движения молекул (атомов) вещества и в их взаимодействии. В газах молекулы почти не взаимодействуют и движутся свободно, заполняя весь объём, в котором газ находится. У жидкостей и твёрдых тел — конденсированных систем — молекулы (атомы) расположены близко друг от друга и взаимодействуют со значительными силами. Это приводит к сохранению жидкостями и твёрдыми телами определённого объёма. Однако характер движения молекул в жидкостях и в твёрдых телах различен, чем и объясняется различие их структуры и свойств. У твёрдых тел в кристаллическом состоянии атомы совершают лишь небольшие колебания вблизи узлов кристаллической решётки; структура этих тел характеризуется высокой степенью упорядоченности — дальним порядком в расположении атомов (см. Дальний порядок и ближний порядок). Тепловое движение молекул жидкости представляет собой сочетание малых колебаний около положений равновесия и частых перескоков из одного положения равновесия в другое. Последние и обусловливают существование в жидкостях лишь ближнего порядка в расположении молекул (атомов), а также свойственные жидкому состоянию подвижность и текучесть. Плазму выделяют в особое А. с. вещества в связи с тем, что заряженные частицы плазмы, в отличие от нейтральных молекул обычного газа, взаимодействуют друг с другом на больших расстояниях. Этим объясняется ряд своеобразных свойств плазмы.