Читаем Большая Советская Энциклопедия (АЛ) полностью

  Полная (т. е. потенциальная плюс кинетическая) энергия a-частицы в разных ядрах может принимать как отрицательные значения, так — с ростом заряда ядра — и положительные. В этом последнем случае А.-р. будет энергетически разрешен. Сплошной линией на рис. 2 изображена суммарная энергия a-частицы в ядре (или, другими словами, энергетический уровень a-частицы в ядре). Положительный избыток полной энергии, обозначенный буквой Е, представляет собой разницу между массой радиоактивного ядра и суммой масс a-частицы и конечного ядра.

  Если бы не существовало потенциального барьера, высота которого V, например, для  равна 15 Мэв, то a-частица с положительной кинетической энергией Е (для  кинетическая энергия составляла бы~4,2 Мэв ) могла бы свободно покидать ядро. Практически это привело бы к тому, что ядра с положительными значениями Е вообще не существовали бы в природе. Однако известно, что в природе существуют ядра с Z ³ 50, для которых Е положительно.

  С другой стороны, с точки зрения классической механики, a-частица с энергией Е < V должна постоянно находиться внутри ядра, потому что для преодоления потенциального барьера у неё не хватает энергии. В рамках классических представлений явление a-радиоактивности понять невозможно.

  Квантовая механика, учитывая волновую природу a-частиц, показывает, что существует конечная вероятность «просачивания» a-частицы через потенциальный барьер (туннельный эффект ). Барьер становится как бы частично прозрачным для a-частицы. Прозрачность барьера зависит от его высоты V и ширины B следующим образом:

  прозрачность   (*).

  Здесь b величина, зависящая от радиуса r ядра, m масса a-частицы, Е — её энергия (см. рис. 2 ). Прозрачность (проницаемость) барьера тем больше, чем меньше его ширина и чем ближе к вершине потенциального барьера расположен энергетический уровень a-частицы (чем больше энергия a-частицы в ядре).

  Вероятность А.-р. пропорциональна проницаемости потенциального барьера. Поскольку с увеличением энергии a-частицы уменьшается ширина барьера (рис. 2 ), становится понятной полученная экспериментально резкая зависимость вероятности А.-р. от Е кинетической энергии a-частиц. Например, при увеличении энергии испускаемых a-частиц с 5 до 6 Мэв вероятность А.-р. увеличивается в 107 раз.

  Вероятность А.-р. зависит также и от вероятности образования a-частицы в ядре. Прежде чем a-частица покинет ядро, она должна там сформироваться. Постоянно a-частицы в ядре не существуют. Четыре элементарные частицы, из которых она состоит, участвуют в сложном движении нуклонов в ядре и нет никакого способа отличить их от др. частиц этого ядра. Однако существует заметная (~10-6 ) вероятность образования a-частицы в ядре на какое-то короткое время в результате случайного сближения 4 нуклонов. Только когда a-частица покинет ядро и окажется достаточно далеко от него, можно рассматривать a-частицу и ядро как две отдельные частицы.

  Вероятность А.-р. резко зависит от размера ядра [см. формулу (*)], что позволяет использовать А.-р. для определения размеров тяжёлых ядер.

  Как уже упоминалось, энергия a-частиц, вылетающих из ядра в результате А.-р., должна быть точно равна энергетическому эквиваленту разности масс ядер до и после А.-р., т. е. величине Е. Это утверждение справедливо только для случая, когда конечное ядро  образуется в основном состоянии. Но если конечное ядро образуется в одном из возбуждённых состояний, то энергия a-частицы будет меньше на величину энергии этого возбуждённого состояния.

  Действительно, экспериментально показано, что a-излучение многих радиоактивных элементов состоит из нескольких групп a-частиц, энергии которых близки друг к другу («тонкая структура» a-спектра). В качестве примера на рис. 3 показан спектр a-частиц от распада  (висмут-212).

  На рис. 4 изображена энергетическая схема a-распада  на основное и возбужденные состояния конечного ядра

  Разность энергий между основной группой и линиями тонкой структуры составляет 0,04, 0,33, 0,47 и 0,49 Мэв. Экспериментально различить линии тонкой структуры a-спектров можно только с помощью магнитных альфа-спектрометров .

  Знание тонкой структуры спектров a-частиц позволяет вычислить энергию возбуждённых состояний конечного ядра.

  Некоторые радиоактивные изотопы испускают небольшое количество a-частиц с энергиями, гораздо большими, чем энергия основной группы a-частиц. Так, например, в спектре a-частиц от распада  присутствуют две группы с энергиями на 0,7 и 1,9 Мэв больше, чем энергия основной группы. Интенсивность этих двух групп т. н. длиннопробежных a-частиц составляет всего ~ 10-5 от полной интенсивности a-излучения. След одной из таких частиц виден на рис. 5 . Существование длиннопробежных частиц связано с тем, что А.-р. могут испытывать ядра, находящиеся в возбуждённом состоянии (с большей энергией).

Перейти на страницу:

Похожие книги

100 великих литературных героев
100 великих литературных героев

Славный Гильгамеш и волшебница Медея, благородный Айвенго и двуликий Дориан Грей, легкомысленная Манон Леско и честолюбивый Жюльен Сорель, герой-защитник Тарас Бульба и «неопределенный» Чичиков, мудрый Сантьяго и славный солдат Василий Теркин… Литературные герои являются в наш мир, чтобы навечно поселиться в нем, творить и активно влиять на наши умы. Автор книги В.Н. Ерёмин рассуждает об основных идеях, которые принес в наш мир тот или иной литературный герой, как развивался его образ в общественном сознании и что он представляет собой в наши дни. Автор имеет свой, оригинальный взгляд на обсуждаемую тему, часто противоположный мнению, принятому в традиционном литературоведении.

Виктор Николаевич Еремин

История / Литературоведение / Энциклопедии / Образование и наука / Словари и Энциклопедии