Сущность метода координат заключается в следующем. Рассмотрим, например, на плоскости p две взаимно перпендикулярные прямые Ox
и Оу (рис. 1). Эти прямые с указанным на них направлением, началом координат О и выбранной масштабной единицей е образуют т. н. декартову прямоугольную систему координат Оху на плоскости. Прямые Ox и Оу называются соответственно осью абсцисс и осью ординат. Положение любой точки М на плоскости по отношению к этой системе Оху можно определить следующим образом. Пусть Mx и My — проекции М на Ox: и Оу, а числа х и y — величины отрезков OMxи ОМу (величина х отрезка OMx, например, равна длине этого отрезка, взятой со знаком плюс, если направление от О к Mxсовпадает с направлением на прямой Ox, и со знаком минус в противоположном случае). Числа х и у называются декартовыми прямоугольными координатами точки М в системе Оху. Обычно они называются соответственно абсциссой и ординатой точки M. Для обозначения точки М с абсциссой х и ординатой у пользуются символом М(х,у). Ясно, что координаты точки М определяют её положение относительно системы Оху.
Пусть на плоскости p с данной декартовой прямоугольной системой координат Оху задана некоторая линия L. Используя понятие координат точек, можно ввести понятие уравнения данной линии L относительно системы Оху как соотношения вида F(x,y) = 0, которому удовлетворяют координаты х и у любой точки M, расположенной на L, и не удовлетворяют координаты каждой точки, не лежащей на L. Если, например, линия L является окружностью радиуса R с центром в начале координат O, то уравнение x2+ y2 — R2 = будет уравнением рассматриваемой окружности, в чём можно убедиться, обратившись к рис. 2. Если точка М лежит на окружности, то по теореме Пифагора для треугольника OMMx получается x2 + y2 — R2 = 0. Если же точка не лежит на окружности, то, очевидно, x2 + y2— R2¹ 0. Итак, линии L на плоскости можно сопоставить её уравнение F(x,y) = 0 относительно системы координат Оху.
Основная идея метода координат на плоскости состоит в том, что геометрические свойства линии L выясняются путём изучения аналитическими и алгебраическими средствами свойств уравнения F(x,y) = 0 этой линии. Например, применим метод координат для выяснения числа точек пересечения окружности С радиуса R и данной прямой линии В (рис. 3). Пусть начало системы координат Оху находится в центре окружности, а ось Ox направлена перпендикулярно прямой В. Так как прямая В перпендикулярна оси Ox, то абсцисса любой точки этой прямой равна некоторой постоянной a. Т. о., уравнение прямой В имеет вид x — a = 0. Координаты (x, y) точки пересечения окружности С (ур-ние которой имеет вид x2 + y2 — R2 = 0) и прямой В удовлетворяют одновременно уравнениям x2
+ y2 - R2 = 0, х - а = 0, (1)то есть являются решением системы (1). Следовательно, геометрический вопрос о числе точек пересечения прямой и окружности сводится к аналитическому вопросу о числе решений алгебраической системы (1). Решая эту систему, получают х = a, у = ± R2
— a2. Итак, окружность и прямая могут пересекаться в двух точках (R2 > a2) (этот случай изображен на рис. 3), могут иметь одну общую точку (R2 = a2) (в этом случае прямая В касается окружности C) и не иметь общих точек (R2 < a2) (в этом случае прямая В лежит вне окружности C). В А. г. на плоскости подробно изучаются геометрические свойства эллипса, гиперболы
и параболы, представляющих собой линии пересечения кругового конуса с плоскостями, не проходящими через его вершину (см. Конические сечения). Эти линии часто встречаются во многих задачах естествознания и техники. Например, движение материальной точки под воздействием центрального поля силы тяжести происходит по одной из этих линий; в инженерном деле для конструирования прожекторов, антенн и телескопов пользуются важным оптическим свойством параболы, заключающимся в том, что лучи света, исходящие из определённой точки (фокуса параболы), после отражения от параболы образуют параллельный пучок. В А. г. на плоскости систематически исследуются т. н. алгебраические линии первого и второго порядков (эти линии в декартовых прямоугольных координатах определяются соответственно алгебраическими уравнениями первой и второй степени). Линии первого порядка суть прямые, и обратно, каждая прямая определяется алгебраическим уравнением первой степени Ax + By
+ С = 0. Линии второго порядка определяются уравнениями вида Ax2 + Вху + Су2 + Dx + Еу + F = 0. Основной метод исследования и классификации этих линий заключается в подборе такой декартовой прямоугольной системы координат, в которой уравнение линии имеет наиболее простой вид, и последующем исследовании этого простого уравнения. Можно доказать, что таким способом уравнение любой вещественной линии второго порядка может быть приведено к одному из следующих простейших видов: