Читаем Большая Советская Энциклопедия (АН) полностью

  Первое из этих уравнений определяет эллипс, второе — гиперболу, третье — параболу, а последние два — пару прямых (пересекающихся, параллельных или слившихся).

  В А. г. в пространстве также пользуются методом координат. При этом декартовы прямоугольные координаты .x, у и z (абсцисса, ордината и апликата) точки М вводятся в полной аналогии с плоским случаем (рис. 4). Каждой поверхности S в пространстве можно сопоставить её уравнение F (x, y, z) =0 относительно системы координат Oxyz. (Так, например, уравнение сферы радиуса R с центром в начале координат имеет вид x2 + y2 + z2R2 = 0.) При этом геометрические свойства поверхности S выясняются путём изучения аналитическими и алгебраическими средствами свойств уравнения этой поверхности. Линию L в пространстве задают как линию пересечения двух поверхностей S1 и S1. Если F1(x, y, z) = 0 и F2(x, y, z) = 0 — уравнения S1 и S2, то пара этих уравнений, рассматриваемая совместно, представляет собой уравнение линии L. Например, прямую L в пространстве можно рассматривать как линию пересечения двух плоскостей. Так как плоскость в пространстве определяется уравнением вида Ax + By + Cz + D = 0, то пара уравнений такого вида, рассматриваемая совместно, представляет собой уравнение прямой L. Т. о., метод координат может применяться и для исследования линий в пространстве. В A. г. в пространстве систематически исследуются т. н. алгебраические поверхности первого и второго порядков. Выясняется, что алгебраическими поверхностями первого порядка являются лишь плоскости. Поверхности второго порядка определяются уравнениями вида:

  Ax2 + By2 + Cz2+ Dxy + Eyz + Fxz + Gx + Ну + Mz + N = 0.

  Основной метод исследования и классификации этих поверхностей заключается в подборе такой декартовой прямоугольной системы координат, в которой уравнение поверхности имеет наиболее простой вид, и последующем исследовании этого простого уравнения. Важнейшими вещественными поверхностями второго порядка являются эллипсоиды, однополостный и двуполостный гиперболоиды, эллиптический и гиперболический параболоиды. Эти поверхности в специально выбранных декартовых прямоугольных системах координат имеют следующие уравнения:

 

 

 

 

 

  Перечисленные важнейшие поверхности второго порядка часто встречаются в различных вопросах механики, физики твёрдого тела, теоретической физике и инженерном деле. Так, при изучении напряжений, возникающих в твёрдом теле, пользуются понятием т. н: эллипсоид напряжений. В различных инженерных сооружениях применяются конструкции в форме гиперболоидов и параболоидов.

  Лит.: Декарт Р., Геометрия, [пер. с франц.], М.—Л., 1938; Вилейтнер Г., История математики от Декарта до середины XIX столетия, пер. с нем., 2 изд., М., 1966; Ефимов Н. В., Краткий курс аналитической геометрии, 9 изд., М., 1967; Ильин В. А., Позняк Э. Г., Аналитическая геометрия, М., 1967; Александров П. С., Лекции по аналитической геометрии, М., 1968; Бахвалов С. В., Моденов П. С., Пархоменко А. С., Сборник задач по аналитической геометрии, 3 изд., М., 1964; Клетеник Д. В., Сборник задач по аналитической геометрии, 9 изд., М., 1967.

  Э. Г. Позняк.

Рис. 4. к ст. Аналитическая геометрия.

Рисунки 1, 2, 3 к ст. Аналитическая геометрия.

Аналитическая философия

Аналити'ческая филосо'фия, направление современной буржуазной, главным образом англо-американской, философии, которое сводит философию к анализу языковых и понятийных (рассматриваемых в конечном счёте обычно так же, как языковые) средств познания.

Перейти на страницу:

Похожие книги

100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии