Читаем Большая Советская Энциклопедия (АН) полностью

  Моногенность функции f эквивалентна её дифференцируемости в смысле комплексного анализа. При этом под дифференцируемостыо f в точке z^ID понимается возможность представления её приращения в виде Df(z) =ADz + a(Dz)Dz, где a(Dz) ® 0 при Dz ® 0; дифференциал df(z) функции f в точке z, равный главной части ADz её приращения Df(z), в этом случае пропорционален dz = Dz и имеет вид f’(z) dz. Полезно сравнить понятия дифференцируемости функции f — в смысле действительного анализа и в смысле комплексного анализа. В первом случае дифференциал df имеет вид (¶fx) dx + (¶fy) dy. Удобно переписать это выражение в комплексной форме. Для этого переходят от независимых переменных x, у к переменным z, , которые формально можно считать новыми независимыми переменными, связанными со старыми соотношениями: z = х + iy,  = x - iy (становясь на эту точку зрения, функцию f иногда записывают в виде f(z,). Выражая dx и dy через dz и d  по обычным правилам вычисления дифференциалов, получают df = f/z)dz + (¶f/)d , где ¶f/¶z = (1/2) (¶f/¶x - i¶f/¶y) и ¶f/¶ = (1/2) (¶f/¶x + i¶f/¶y) (формальные) производные функции f по z и  соответственно.

Отсюда уже нетрудно заключить, что дифференцируемость функции f в смысле комплексного анализа имеет место в том и только том случае, когда она дифференцируема в смысле действительного анализа и справедливо равенство ¶f/¶ = 0, являющееся краткой формой записи уравнений Коши — Римана; при этом

  ¶fz = f’ = df/dz.

  Равенство ¶f/¶ = 0 показывает, что дифференцируемыми в смысле комплексного анализа являются те и только те функции f, которые, рассматриваемые формально как функции независимых переменных z и  «зависят только от z», являются «функциями комплексного переменного z».

  Интеграл от функции f = j + iy вдоль (ориентированной спрямляемой) кривой Г можно определить с помощью понятия криволинейного интеграла:

 

  Центральное место в теории моногенных функций (теории Коши) занимает следующая итегральная теорема Коши: если функция моногенна в односвязной области D, то SГf(z)dz = 0 для любой замкнутой кривой Г, лежащей в этой области. В произвольной области D то же утверждение справедливо для замкнутых кривых Г, которые непрерывной деформацией могут быть стянуты в точку (оставаясь в пределах области D). Опираясь на интегральную теорему Коши, нетрудно доказать интегральную формулу Коши: если функция f моногенна в области D и Г — простая замкнутая кривая, принадлежащая области D вместе со своей внутренностью DГ то для любой точки z^IDГ

 

(ориентация кривой Г предполагается положительной относительно области D Г)

  Пусть функция f моногенна в области D. Фиксируем произвольную точку z области D и обозначим через g окружность с центром в точке z и радиусом r > 0, принадлежащую, вместе со всем кругом: К: Iz - zI < r, области D. Тогда

 

  Представим ядро Коши 1/(tz) для t^Ig и z^IK в виде суммы бесконечной геометрической прогрессии:

  поэтому ряд сходится равномерно относительно t^Ig при любом фиксированном z^IK, интегрируя этот ряд — после умножения на

  почленно, получают разложение функции f в степенной ряд

  сходящийся в круге K: I z - z I < r.

  Уточним теперь понятие аналитичности. Пусть f — функция, определённая в области D; она называется аналитической (или голоморфной) в точке z области , если существует окрестность этой точки (круг с центром в z), в которой функция f представляется степенным рядом:

f (z) = a + a1(z -z) + a2(z - z)2 +. . . . + an(z - z)n+ . . .

  Если это свойство имеет место в каждой точке z области D, то функция f называется аналитической (голоморфной) в области D.

  Выше было показано, что функция f, моногенная в области D, аналитична в этой области. В отдельной точке это утверждение неверно; например, функция f(z) = ^ez^e2 = z моногенна в точке z = 0, но нигде не аналитична. С другой стороны, функция f , аналитическая в точке z области D, моногенна в этой точке. Более того, сумма сходящегося степенного ряда имеет производные всех порядков (бесконечно дифференцируема) по комплексному переменному z; коэффициенты ряда могут быть выражены через производные функции f в точке z по формулам: an=f(n)(z)/n!. Степенной ряд, записанный в форме

  называется рядом Тейлора функции f в точке z. Тем самым, аналитичность функции f в области D означает, что в каждой точке области D функция f бесконечно дифференцируема и её ряд Тейлора сходится к ней в некоторой окрестности этой точки.

  Следовательно, понятия моногенности и аналитичности функции в области тождественны и каждое из следующих свойств функции f в области D — моногенность, дифференцируемость в смысле комплексного анализа, дифференцируемость в смысле действительного анализа вместе с выполнением уравнений Коши — Римана — может служить определением аналитичности f в этой области.

Перейти на страницу:

Похожие книги

100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии