В устройства управления входят: кнопочный пульт (для пуска и останова электродвигателя), контакторы
,
блок-контакты, преобразователи частоты и напряжения, предохранители, а также блоки защиты от перегрузок в аварийных режимах. При питании Э. от источника переменного тока, что характерно для Э., используемых в промышленности и на электроподвижном составе, двигатели которого питаются от сети переменного тока, в качестве преобразующих устройств применяют электромашинные или статические преобразователи электроэнергии — выпрямители. При питании от источника постоянного тока, что характерно для автономных электроэнергетических систем и электроподвижного состава, двигатели которого питаются от сети постоянного тока, преобразующие устройства выполняют в виде релейно-контакторных систем или статических преобразователей (см.
Преобразовательная техника
).
В 70-е гг. 20 в. всё чаще и в регулируемых Э. стали применять трёхфазные асинхронные и синхронные двигатели, регулирование режимов работы которых осуществляют с помощью статических, в основном полупроводниковых, преобразователей частоты
.
Э. со статическими преобразователями энергии, выполненными на базе ртутных или полупроводниковых вентилей, называются вентильными Э. Единичная мощность вентильных Э. переменного тока, используемых, например, для шахтных мельниц, достигает 10 Мвт
и более. Применение в Э. вентильных преобразовательных устройств позволяет решать наиболее экономичным образом задачу возврата энергии от электродвигателя источнику питания (см. Рекуперативное торможение
). К важным показателям, определяющим характеристики устройств управления регулируемого Э., следует отнести плавность регулирования режима работы рабочего механизма, во многом зависящую от плавности регулирования приводного электродвигателя, и быстродействие. Релейно-контакторные устройства управления при сравнительно низком быстродействии обеспечивают ступенчатое (дискретное) регулирование режимов работы, быстродействующие статические системы — непрерывное регулирование. В простейших Э. относительно небольшой мощности операции, связанные с регулированием режима работы исполнительного механизма, производят при помощи ручного управления. Недостатком ручного управления является инерционность процесса регулирования и вызываемое этим снижение производительности исполнительного механизма, а также невозможность точного воспроизведения повторяющихся производственных процессов (например, при частых пусках). Регулирование режимов работы исполнительных механизмов Э. обычно осуществляют при помощи устройств автоматического управления. Такой Э., называется автоматизированным, широко используется в системах автоматического управления (САУ). В разомкнутых САУ изменение возмущающего воздействия (например, нагрузки на валу электродвигателя) вызывает изменение заданного режима работы Э. В замкнутых САУ благодаря связи между входом и выходом системы во всех режимах работы автоматически поддерживаются заданные характеристики, которые при этом можно и регулировать по определенному закону. В таких системах находят все более широкое применение ЭВМ. Одной из разновидностей автоматизированного Э. является следящий электропривод
,
в котором исполнительный орган с определённой точностью воспроизводит движения рабочего механизма, задаваемые управляющим органом. По способу действия различают следящие Э. с релейным, или дискретным, управлением и с непрерывным управлением. Следящие Э. характеризуются мощностями от нескольких
вт
до десятков и сотен квт,
применяются в различных промышленных установках, военной технике и др. В 60-е гг. 20 в. в различных областях техники нашли применение Э. с числовым программным управлением (ЧПУ). Такой Э. используют в многооперационных металлорежущих станках, автоматических и полуавтоматических линиях. Создание автоматизированного Э. для обслуживания отдельных технологических операций и процессов — основа комплексной автоматизации производства. Для решения этой задачи необходимо совершенствование Э. как в направлении расширения диапазона мощностей Э. и возможностей регулирования, так и в направлении повышения надёжности и создания Э. с оптимальными габаритами и массой. Лит.:
Чиликин М. Г., Общий курс электропривода, 5 изд., М., 1971; Авен О. И., Доманицкий С. М., Бесконтактные исполнительные устройства промышленной автоматики, М. — Л., 1960; Электропривод систем управления летательных аппаратов. М., 1973; Основы автоматизированного электропривода, М., 1974. Ю. М. Иньков.
Электропривод автоматизированный
Электропри'вод автоматизи'рованный,
см. в ст. Электропривод
.Электропроводность (биол.)