Читаем Большая Советская Энциклопедия (ЭЛ) полностью

  Электроизоляционное стекло применяют для изготовления изоляторов линий электропередач, герметичных вводов и разъёмов, конденсаторов; стеклянную ткань и стеклопластики — для изоляции деталей электрических машин и устройств. В тонкой стеклянной изоляции выпускается микропровод. Для электроизоляции используют бесщелочные и малощелочные алюмосиликатные стекла, обладающие высокими электросопротивлением и влагостойкостью, электрической и термической прочностью.

  Электровакуумное стекло — основной конструкционный материал в электровакуумном приборостроении и производстве источников света. Из него изготовляют электронные лампы, электроннолучевые и рентгеновские трубки, фотоумножители, счётчики частиц, лампы накаливания, газоразрядные лампы, галогенные лампы, импульсные источники света и. т. д. Из электровакуумного стекла делают оболочки, держатели и изоляторы электродов («ножки»), а также герметичные выводы электровакуумных и полупроводниковых приборов с металлическим корпусом. Электровакуумные стекла должны иметь высокие диэлектрические характеристики и (во избежание растрескивания спаев) согласованный с металлами (или стеклами) коэффициент теплового расширения (КТР) a. По значению КТР и следовательно, возможности спаивания с соответствующими металлами электровакуумные стекла разделяют на следующие основные группы (ax107 град—1 ): кварцевая (6—10), вольфрамовая (37—40), молибденовая (47—50), титановая (72—75), платинитовая (84—92), железная (110—120).

  Для спаивания металлов и стекол со значительной разницей в КТР (например кварцевого стекла ) используют последовательные спаи из нескольких стекол с небольшими отличиями в КТР (переходные стекла) или специальные переходы. В отечественной классификации электровакуумных стекол значение КТР указывается в марке стекла (например, стекло С49-2 имеет a = 49x10—7 град—1 ). В качестве электровакуумных стекол используют бромсиликатные, алюмосиликатные, щелочные и бесщелочные стекла, содержащие окислы щёлочноземельных металлов, свинца и др. Для изготовления мощных источников света применяют кварцевое и высоко- кремнезёмное (кварцоидное) стекла (94—96% SiO2 ).

  В микроэлектронике тонкие (1—50 мкм ) стеклянные плёнки используют для межслойной изоляции бескорпусной защиты интегральных схем , герметизации их корпусов и т. д. Для получения тонких плёнок применяют легкоплавкие бесщелочные боратные и боросиликатные стекла. Из стекол изготовляют некоторые типы корпусов интегральных схем.

  Лит.: Справочник по производству стекла, под ред. И. И. Китайгородского и С. И. Сильвестровича, т. 1, М., 1963; Роус Б., Стекло в электронике, пер. с чеш., М., 1969; Цимберов А. И., Штерн А. В., Стеклянные изоляторы, М., 1973.

  В. И. Шелюбский.

Электротон

Электрото'н (от электро... и греч tonos — напряжение), изменение состояния нерва, мышцы и других возбудимых тканей, подвергаемых воздействию постоянного электрического тока. Впервые обнаружен в 1859 немецким физиологом Э. Пфлюгером, который показал, что при замыкании тока подпороговой силы в области приложения анода возбудимость понижается (анэлектротон), а в области катода — повышается (катэлектротон). При постепенном повышении силы тока его замыкание приводит к появлению в области катода потенциала действия, но в области анода снижение возбудимости может привести к блоку проведения. Русский физиолог Б. Ф. Вериго (1883, 1888), существенно дополнивший данные Пфлюгера , установил, что при длительном действии тока начальное «катэлектротоническое» повышение возбудимости сменяется «католической депрессией», т. е. снижением возбудимости, а в области анода возбудимости переходит в «анодическую экзальтацию». Э. способен распространяться вдоль нервной или мышечной клеток (периэлектротон). Природа первичных (при кратковременном действии тока) и вторичных (при его длительном действии) электротонических изменений возбудимости и проводимости различна. Первичные катэлектротон и анэлектротон объясняются сдвигами мембранного потенциала возбудимой клетки соответственно ближе или дальше от критического уровня, при котором начинает генерироваться потенциал действия (см. Биоэлектрические потенциалы , Поляризация биоэлектрическая). Вторичные электротонические явления связаны с воздействием на процессы инактивации натриевой проницаемости и активации калиевой проницаемости мембраны возбудимой клетки (см. Мембранная теория возбуждения ). Явления Э., участвуя в механизмах, формирующих работу нервной системы, играют важную роль в распространении импульсов по нервным сетям. Изучение Э. привело к разработке приёмов раздражения двигательного аппарата человека, которые используются при электродиагностике заболеваний периферической нервной и мышечной систем.

  Л. Г. Магазаник.

Электротравма

Перейти на страницу:

Похожие книги

100 великих некрополей
100 великих некрополей

Человеческая жизнь коротка, и даже великие мудрецы не всегда могли понять, что же скрывается за вратами вечности: тайна Божественного замысла, райские кущи или адские муки? Простым смертным и вовсе не под силу было разгадать эту загадку. Однако во все времена одним из мерил духовности и нравственности народов служило их отношение к умершим. Некрополи — мемориальные сооружения прошлых эпох — занимают одно из важнейших мест среди памятников материальной культуры. Некоторые из них — это не только выдающиеся произведения архитектуры и искусства, но и важные для исследователей исторические источники.Новая книга из серии «100 великих» содержит сведения о наиболее выдающихся некрополях всех времен и народов от египетских пирамид и зороастрийских «башен молчания» до Александро-Невской лавры, Сент-Женевьев-дю-Буа и мавзолея Мао Цзэдуна.

Надежда Алексеевна Ионина , Надежда Ионина

Энциклопедии / Словари и Энциклопедии