Электроизоляционное стекло применяют для изготовления изоляторов линий электропередач, герметичных вводов и разъёмов, конденсаторов; стеклянную ткань и стеклопластики — для изоляции деталей электрических машин и устройств. В тонкой стеклянной изоляции выпускается микропровод. Для электроизоляции используют бесщелочные и малощелочные алюмосиликатные стекла, обладающие высокими электросопротивлением и влагостойкостью, электрической и термической прочностью.
Электровакуумное стекло — основной конструкционный материал в электровакуумном приборостроении и производстве источников света. Из него изготовляют электронные лампы, электроннолучевые и рентгеновские трубки, фотоумножители, счётчики частиц, лампы накаливания, газоразрядные лампы, галогенные лампы, импульсные источники света и.
т. д. Из электровакуумного стекла делают оболочки, держатели и изоляторы электродов («ножки»), а также герметичные выводы электровакуумных и полупроводниковых приборов с металлическим корпусом. Электровакуумные стекла должны иметь высокие диэлектрические характеристики и (во избежание растрескивания спаев) согласованный с металлами (или стеклами) коэффициент теплового расширения (КТР) a. По значению КТР и следовательно, возможности спаивания с соответствующими металлами электровакуумные стекла разделяют на следующие основные группы (ax107
град—1
): кварцевая (6—10), вольфрамовая (37—40), молибденовая (47—50), титановая (72—75), платинитовая (84—92), железная (110—120). Для спаивания металлов и стекол со значительной разницей в КТР (например кварцевого стекла
) используют последовательные спаи из нескольких стекол с небольшими отличиями в КТР (переходные стекла) или специальные переходы. В отечественной классификации электровакуумных стекол значение КТР указывается в марке стекла (например, стекло С49-2 имеет a =
49x10—7
град—1
). В качестве электровакуумных стекол используют бромсиликатные, алюмосиликатные, щелочные и бесщелочные стекла, содержащие окислы щёлочноземельных металлов, свинца и др. Для изготовления мощных источников света применяют кварцевое и высоко- кремнезёмное (кварцоидное) стекла (94—96% SiO2
). В микроэлектронике тонкие (1—50 мкм
) стеклянные плёнки используют для межслойной изоляции бескорпусной защиты интегральных схем
,
герметизации их корпусов и т. д. Для получения тонких плёнок применяют легкоплавкие бесщелочные боратные и боросиликатные стекла. Из стекол изготовляют некоторые типы корпусов интегральных схем. Лит.:
Справочник по производству стекла, под ред. И. И. Китайгородского и С. И. Сильвестровича, т. 1, М., 1963; Роус Б., Стекло в электронике, пер. с чеш., М., 1969; Цимберов А. И., Штерн А. В., Стеклянные изоляторы, М., 1973. В. И. Шелюбский.
Электротон
Электрото'н
(от электро...
и греч tonos — напряжение), изменение состояния нерва, мышцы и других возбудимых тканей, подвергаемых воздействию постоянного электрического тока. Впервые обнаружен в 1859 немецким физиологом Э. Пфлюгером, который показал, что при замыкании тока подпороговой силы в области приложения анода возбудимость понижается (анэлектротон), а в области катода — повышается (катэлектротон). При постепенном повышении силы тока его замыкание приводит к появлению в области катода потенциала действия, но в области анода снижение возбудимости может привести к блоку проведения. Русский физиолог Б. Ф. Вериго (1883, 1888), существенно дополнивший данные Пфлюгера
, установил, что при длительном действии тока начальное «катэлектротоническое» повышение возбудимости сменяется «католической депрессией», т. е. снижением возбудимости, а в области анода возбудимости переходит в «анодическую экзальтацию». Э. способен распространяться вдоль нервной или мышечной клеток (периэлектротон). Природа первичных (при кратковременном действии тока) и вторичных (при его длительном действии) электротонических изменений возбудимости и проводимости различна. Первичные катэлектротон и анэлектротон объясняются сдвигами мембранного потенциала возбудимой клетки соответственно ближе или дальше от критического уровня, при котором начинает генерироваться потенциал действия (см. Биоэлектрические потенциалы
, Поляризация
биоэлектрическая). Вторичные электротонические явления связаны с воздействием на процессы инактивации натриевой проницаемости и активации калиевой проницаемости мембраны возбудимой клетки (см. Мембранная теория возбуждения
).
Явления Э., участвуя в механизмах, формирующих работу нервной системы, играют важную роль в распространении импульсов по нервным сетям. Изучение Э. привело к разработке приёмов раздражения двигательного аппарата человека, которые используются при электродиагностике заболеваний периферической нервной и мышечной систем. Л. Г. Магазаник.
Электротравма