Лит.:
Гальвани А., Вольта А., Избранные работы о животном электричестве, М. — Л., 1937; Брейзье М., Электрическая активность нервной системы, пер. с англ., М., 1955; Веритов И. О., Общая физиология мышечной и нервной системы, 3 изд., т. 1—2, М., 1959—66; Воронцов Д. С., Общая электрофизиология, М., 1961; Ходжкин А., Нервный импульс, пер. с англ., М., 1965; Катц Б., Нерв, мышца и синапс, пер. с англ., М., 1968; Ходоров Б. И., Общая физиология возбудимых мембран, М., 1975 (Руководство по физиологии); Костюк П. Г., Физиология центральной нервной системы, 2 изд., К., 1977; Erianger J., Gasser H. S., Electrical signs of nervous activity, Phil, 1937; Schaefer H., Elektrophy-siologie, Bd 1—2, W., 1940—42; Hubbard J., Llinas R., Quastel D., Electrophysiological analysis of synaptic transmission, L., 1969 П. Г. Костюк.
Электрофизические и электрохимические методы обработки
Электрофизи'ческие и электрохими'ческие ме'тоды обрабо'тки,
общее название методов обработки конструкционных материалов непосредственно электрическим током, электролизом и их сочетанием с механическим воздействием. В Э. и э. м. о. включают также методы ультразвуковые, плазменные и ряд других методов. С разработкой и внедрением в производство этих методов сделан принципиально новый шаг в технологии обработки материалов — электрическая энергия из вспомогательного средства при механической обработке (осуществление движения заготовки, инструмента) стала рабочим агентом. Всё более широкое использование Э. и э. м. о. в промышленности обусловлено их высокой производительностью, возможностью выполнять технологические операции, недоступные механическим методам обработки. Э. и э. м. о. весьма разнообразны и условно их можно разделить на электрофизические (электроэрозионные, электромеханические, лучевые), электрохимические и комбинированные (рис. 1
). Электрофизические методы обработки
Электроэрозионная обработка
основана на вырывании частиц материала с поверхности импульсом электрического разряда. Если задано напряжение (расстояние) между электродами, погруженными в жидкий диэлектрик, то при их сближении (увеличении напряжения) происходит пробой диэлектрика — возникает электрический разряд, в канале которого образуется плазма с высокой температурой. Т. к. длительность используемых в данном методе обработки электрических импульсов не превышает 10—2
сек,
выделяющееся тепло не успевает распространиться в глубь материала и даже незначительной энергии оказывается достаточно, чтобы разогреть, расплавить и испарить небольшое количество вещества. Кроме того, давление, развиваемое частицами плазмы при ударе об электрод, способствует выбросу (эрозии) не только расплавленного, но и просто разогретого вещества. Поскольку электрический пробой, как правило, происходит по кратчайшему пути, то прежде всего разрушаются наиболее близко расположенные участки электродов. Т. о., при приближении одного электрода заданной формы (инструмента) к другому (заготовке) поверхность последнего примет форму поверхности первого (рис. 2
). Производительность процесса, качество получаемой поверхности в основном определяются параметрами электрических импульсов (их длительностью, частотой следования, энергией в импульсе). Электроэрозионный метод обработки объединил электроискровой и электроимпульсный методы. Электроискровая обработка была предложена советскими учёными H. И. и Б. Р. Лазаренко в 1943. Она основана на использовании искрового разряда
.
При этом в канале разряда температура достигает 10000 °С, развиваются значительные гидродинамические силы, но сами импульсы относительно короткие и, следовательно, содержат мало энергии, поэтому воздействие каждого импульса на поверхность материала невелико. Метод позволяет получить хорошую поверхность, но не обладает достаточной производительностью. Кроме того, при этом методе износ инструмента относительно велик (достигает 100% от объёма снятого материала). Метод используется в основном при прецизионной обработке небольших деталей, мелких отверстий, вырезке контуров. твердосплавных штампов проволочным электродом (см. ниже).