С начала 50-х гг. ускорители превратились в основной инструмент для исследования Э. ч. В 70-х гг. энергии частиц, разогнанных на ускорителях, составили десятки и сотни млрд. электронвольт
(Гэв
).
Стремление к увеличению энергий частиц обусловлено тем, что высокие энергии открывают возможность изучения строения материи на тем меньших расстояниях, чем выше энергия сталкивающихся частиц. Ускорители существенно увеличили темп получения новых данных и в короткий срок расширили и обогатили наше знание свойств микромира. Применение ускорителей для изучения странных частиц позволило более детально изучить их свойства, в частности особенности их распада, и вскоре привело к важному открытию: выяснению возможности изменения характеристик некоторых микропроцессов при операции зеркального отражения (см. Пространственная инверсия
) —
т. н. нарушению пространств. чётности
(1956). Ввод в строй протонных ускорителей с энергиями в миллиарды эв
позволил открыть тяжёлые античастицы: антипротон
(1955), антинейтрон
(1956), антисигма-гипероны (1960). В 1964 был открыт самый тяжёлый гиперон W-
(с массой около двух масс протона). В 1960-х гг. на ускорителях было открыто большое число крайне неустойчивых (по сравнению с др. нестабильными Э. ч.) частиц, получивших название «резонансов». Массы большинства резонансов превышают массу протона. Первый из них D1
(1232) был известен с 1953. Оказалось, что резонансы составляют основная часть Э. ч. В 1962 было выяснено, что существуют два разных нейтрино: электронное и мюонное. В 1964 в распадах нейтральных К-мезонов. было обнаружено несохранение т, н. комбинированной чётности (введённой Ли Цзун-дао
и Ян Чжэнь-нином
и независимо Л. Д. Ландау
в 1956; см. Комбинированная инверсия
),
означающее необходимость пересмотра привычных взглядов на поведение физических процессов при операции отражения времени (см. Теорема СРТ
). В 1974 были обнаружены массивные (в 3—4 протонные массы) и в то же время относительно устойчивые y-частицы, с временем жизни, необычно большим для резонансов. Они оказались тесно связанными с новым семейством Э. ч. — «очарованных», первые представители которого (D
, D+
, Lс
) были открыты в 1976. В 1975 были получены первые сведения о существовании тяжёлого аналога электрона и мюона (тяжёлого лептона t). В 1977 были открыты !-частицы с массой порядка десятка протонных масс. Таким образом, за годы, прошедшие после открытия электрона, было выявлено огромное число разнообразных микрочастиц материи. Мир Э. ч. оказался достаточно сложно устроенным. Неожиданными во многих отношениях оказались свойства обнаруженных Э. ч. Для их описания, помимо характеристик, заимствованных из классической физики, таких, как электрический заряд, масса, момент количества движения, потребовалось ввести много новых специальных характеристик, в частности для описания странных Э. ч. — странность
(К. Нишиджима
,
М. Гелл-Ман
,
1953), «очарованных» Э.
ч. — «очарование» (американские физики Дж. Бьёркен, Ш. Глэшоу, 1964); уже названия приведённых характеристик отражают необычность описываемых ими свойств Э. ч.