От всех других Э. ч. кварки отличаются тем, что в свободном состоянии они пока не наблюдались, хотя имеются свидетельства их существования в связанном состоянии. Одной из причин ненаблюдения кварков может быть их очень большая масса, что препятствует их рождению при энергиях современных ускорителей. Не исключено, однако, что кварки принципиально, в силу специфики их взаимодействия, не могут находиться в свободном состоянии. Существуют доводы теоретического и экспериментального характера в пользу того, что силы, действующие между кварками, не ослабляются с расстоянием. Это означает, что для отделения кварков друг от друга требуется бесконечно большая энергия, или, иначе, возникновение кварков в свободном состоянии невозможно. Невозможность выделить кварки в свободном состоянии делает их совершенно новым типом структурных единиц вещества. Неясно, например, можно ли ставить вопрос о составных частях кварков, если сами кварки нельзя наблюдать в свободном состоянии. Возможно, что в этих условиях части кварков физически вообще не проявляются и поэтому кварки выступают как последняя ступень дробления адронной материи.
Элементарные частицы и квантовая теория поля.
Для описания свойств и взаимодействий Э. ч. в современной теории существенное значение имеет понятие физ. поля, которое ставится в соответствие каждой частице. Поле есть специфическая форма материи; оно описывается функцией, задаваемой во всех точках (х
)
пространства-времени и обладающей определёнными трансформационными свойствами по отношению к преобразованиям группы Лоренца (скаляр
, спинор
, вектор
и т. д.) и групп «внутренних» симметрий (изотопический скаляр, изотопический спинор и т. д.). Электромагнитное поле, обладающее свойствами четырёхмерного вектора Аm
(х
) (m = 1, 2, 3, 4), — исторически первый пример физического поля. Поля, сопоставляемые с Э. ч., имеют квантовую природу, т. е. их энергия и импульс слагаются из множества отд. порций — квантов, причём энергия Ek
и импульс pk
кванта связаны соотношением специальной теории относительности: Ek2 =pk2c2
+ m2c2.
Каждый такой квант и есть Э. ч. с заданной энергией Ek
,
импульсом pk
и массой т.
Квантами электромагнитного поля являются фотоны, кванты других полей соответствуют всем остальным известным Э. ч. Поле, т. о., есть физическое отражение существования бесконечной совокупности частиц — квантов. Специальный математический аппарат квантовой теории поля позволяет описать рождение и уничтожение частицы в каждой точке х.
Трансформационные свойства поля определяют все квантовые числа Э. ч. Трансформационные свойства по отношению к преобразованиям пространства-времени (группе Лоренца) задают спин частиц. Так, скаляру соответствует спин 0, спинору — спин 1
/2
, вектору — спин 1 и т. д. Существование таких квантовых чисел, как L, В, 1,Y
, Ch
и для кварков и глюонов «цвет», следует из трансформационных свойств полей по отношению к преобразованиям «внутренних пространств» («зарядового пространства», «изотопического пространства», «унитарного пространства» и т. д.). Существование «цвета» у кварков, в частности, связывается с особым «цветным» унитарным пространством. Введение «внутренних пространств» в аппарате теории — пока чисто формальный приём, который, однако, может служить указанием на то, что размерность физического пространства-времени, отражающаяся в свойствах Э. ч., реально больше четырёх — размерности пространства-времени, характерной для всех макроскопических физических процессов. Масса Э. ч. не связана непосредственно с трансформационными свойствами полей; это дополнительная их характеристика. Для описания процессов, происходящих с Э. ч., необходимо знать, как различные физические поля связаны друг с другом, т. е. знать динамику полей. В современном аппарате квантовой теории поля сведения о динамике полей заключены в особой величине, выражающейся через поля — лагранжиане (точнее, плотности лагранжиана) L.
Знание L
позволяет в принципе рассчитывать вероятности переходов от одной совокупности частиц к другой под влиянием различных взаимодействий. Эти вероятности даются т. н. матрицей рассеяния
(В. Гейзенберг, 1943), выражающейся через L.
Лагранжиан L
состоит из лагранжиана Lвз,
описывающего поведение свободных полей, и лагранжиана взаимодействия Lвз
, построенного из полей разных частиц и отражающего возможность их взаимопревращений. Знание Lвз
является определяющим для описания процессов с Э. ч.