Читаем Большая Советская энциклопедия (ГА) полностью

  а для механической системы Z равняется сумме таких величин.

  Рассмотрим, например, точку, которая начинает двигаться вдоль гладкой наклонной плоскости из положения А без начальной скорости (см. рис.). Для неё кинематически возможно любое перемещение АВ, AB1 , AB2 ,... в этой плоскости с какими-то ускорениями w, w1 , w2 ,..; при свободном же падении точка совершила бы перемещение AC вдоль вертикали с ускорением g . Тогда отклонения точки от свободного движения изобразятся отрезками CB, CB1 , CB2 ,..., наименьшим из которых будет отрезок CB , перпендикулярный к наклонной плоскости. Следовательно, «принуждение» Z , пропорциональное квадратам CB, CB1 , CB2 ,..., будет наименьшим при движении вдоль линии наименьшего ската AD . Это и будет истинное движение точки, происходящее с ускорением w = gsina.

  Г. п. пользуются для составления уравнений движения механических систем и изучения свойств этих движений.

  Лит . см. при ст. Вариационные принципы механики .



Рис. к ст. Гаусса принцип.

Гаусса распределение

Га'усса распределе'ние , закон распределения вероятностей; то же, что нормальное распределение .

Гаусса система единиц

Га'усса систе'ма едини'ц , система электрических и магнитных величин с основными единицами сантиметр, грамм и секунда, в которой диэлектрическая и магнитная проницаемости являются безразмерными величинами, причём для вакуума они приняты равными единице. Единицы электрических величин в Г. с. е. равны единицам абсолютной электростатической системы СГСЭ, а единицы магнитных величин — единицам абсолютной электромагнитной системы СГСМ, в связи с чем Г. с; е. часто называют симметричной системой СГС (см. СГС система единиц ). Г. с. е. названа в честь К. Гаусса , высказавшего в 1832 идею создания абсолютной системы единиц с основными единицами миллиметр, миллиграмм и секунда и разработавшего эту систему (совместно с В. Вебером ) для измерений магнитных величин.

  Лит.: Бурдун Г. Д., Единицы физических величин, 4 изд., M., 1967.

  Г. Д. Бурдун.

Гаусса теорема

Га'усса теоре'ма , теорема электростатики , предложенная К. Гауссом и устанавливающая связь потока напряжённости Е электрического поля через замкнутую поверхность с величиной заряда q , находящегося внутри этой поверхности. Потоком вектора Е через элемент поверхности DSi называется произведение величины этого элемента и проекции Eni вектора Е на нормаль к DSi . Поток N через замкнутую поверхность S равен сумме потоков через все элементы поверхности. В абсолютной системе единиц Гаусса (СГС)

 

  Г. т. вытекает из закона Кулона — закона взаимодействия неподвижных точечных зарядов в вакууме.

  В диэлектрике Г. т. справедлива для потока вектора электрической индукции D :

 

  где q — суммарный свободный заряд внутри поверхности S . Формула (2) представляет собой интегральную форму одного из уравнений Максвелла для электромагнитного поля (см. Электродинамика ) и выражает тот факт, что электрические заряды являются источниками электрического поля.

  Г. Я. Мякишев.

Гаусса формулы

Га'усса фо'рмулы , формулы, относящиеся к различным разделам математики и носящие имя К. Гаусса .

1) Квадратурные Г. ф. — формулы вида

 

  в которых узлы xk и коэффициенты Ak не зависят от функции f (x) и выбраны так, что формула точна (т. е. Rn = 0) для произвольного многочлена степени 2n - 1 . В отличие от квадратурных формул Ньютона — Котеса, узлы в квадратурных Г. ф., вообще говоря, не являются равноотстоящими. Если р (х) ³ 0 и

 

  то для любого натурального n имеется единственная квадратурная Г. ф. Эти формулы имеют большое практическое значение, т.к. в ряде случаев они дают значительно большую точность, чем квадратурные формулы с тем же числом равноотстоящих узлов. Сам Гаусс исследовал (1816) случай р (х) º 1 .

  2) Г. ф., выражающая полную кривизну К поверхности через коэффициенты её линейного элемента; в координатах, для которых ds2 = l(du2 + dv2 ) , Г. ф. имеет вид

 

  Эта формула была опубликована в 1827 и показывает, что полная кривизна не меняется при изгибании поверхности. Она составляет содержание одного из основных предложений созданной Гауссом внутренней геометрии поверхности.

  3) Г. ф. для сумм Гаусса:

 

  Эта формула была использована Гауссом (1801) в одном из доказательств закона взаимности квадратичных вычетов

 

  где р и q — нечётные простые числа, а  — Лежандра символ . Она явилась первым примером применения метода тригонометрических сумм в теории чисел. Этот метод был развит далее в работах Г. Вейля и особенно И. М. Виноградова и представляет собой один из наиболее мощных методов аналитической теории чисел.

Перейти на страницу:

Все книги серии Большая Советская энциклопедия

Похожие книги

100 великих кумиров XX века
100 великих кумиров XX века

Во все времена и у всех народов были свои кумиры, которых обожали тысячи, а порой и миллионы людей. Перед ними преклонялись, стремились быть похожими на них, изучали биографии и жадно ловили все слухи и известия о знаменитостях.Научно-техническая революция XX века серьёзно повлияла на формирование вкусов и предпочтений широкой публики. С увеличением тиражей газет и журналов, появлением кино, радио, телевидения, Интернета любая информация стала доходить до людей гораздо быстрее и в большем объёме; выросли и возможности манипулирования общественным сознанием.Книга о ста великих кумирах XX века — это не только и не столько сборник занимательных биографических новелл. Это прежде всего рассказы о том, как были «сотворены» кумиры новейшего времени, почему их жизнь привлекала пристальное внимание современников. Подбор персоналий для данной книги отражает любопытную тенденцию: кумирами народов всё чаще становятся не монархи, политики и полководцы, а спортсмены, путешественники, люди искусства и шоу-бизнеса, известные модельеры, иногда писатели и учёные.

Игорь Анатольевич Мусский

Биографии и Мемуары / Энциклопедии / Документальное / Словари и Энциклопедии
100 великих рекордов стихий
100 великих рекордов стихий

Если приглядеться к статистике природных аномалий хотя бы за последние два-три года, станет очевидно: наша планета пустилась во все тяжкие и, как пугают нас последователи Нострадамуса, того и гляди «налетит на небесную ось». Катаклизмы и необъяснимые явления следуют друг за другом, они стали случаться даже в тех районах Земли, где люди отроду не знали никаких природных напастей. Не исключено, что скоро Земля не сможет носить на себе почти 7-миллиардное население, и оно должно будет сократиться в несколько раз с помощью тех же природных катастроф! А может, лучше человечеству не доводить Землю до такого состояния?В этой книге рассказывается о рекордах бедствий и необъяснимых природных явлений, которые сотрясали нашу планету и поражали человечество на протяжении его истории.

Николай Николаевич Непомнящий

Геология и география / Энциклопедии / Словари и Энциклопедии