Читаем Большая Советская Энциклопедия (ГЕ) полностью

  Американский генетик Т. Х. Морган в 1911 начал разрабатывать хромосомную теорию наледственности. Было доказано, что Г. расположены в хромосомах и что сосредоточенные в одной хромосоме Г. передаются от родителей потомкам совместно, образуя единую группу сцепления. Число групп сцепления для любого нормального организма постоянно и равно гаплоидному числу хромосом в его половых клетках, после того как было доказано, что при кроссинговере гомологичные хромосомы обмениваются друг с другом участками — блоками Г., — стала ясной неодинаковая степень сцепления между различными Г. Использовав явления кроссинговера, Морган с сотрудниками приступили к анализу внутрихромосомной локализации Г. и доказали, что они располагаются в хромосоме линейно и каждый Г. занимает строго определённое место в соответственной хромосоме. Сравнивая частоту и последствия кроссинговера между разными парами, можно составить генетические карты хромосом, в которых точно указано взаимное расположение Г., а также приблизительное расстояние между ними. Подобные карты построены для ряда животных (например, дрозофилы, домашней мыши, кур), растений (кукурузы, томатов и др.), бактерий и вирусов, одновременное изучение нарушений расщепления признаков в потомстве и цитологическое изучение строения хромосом в клетках позволяет сопоставить нарушения в структуре отдельных хромосом с изменением признаков у данной особи, что показывает положение в хромосоме Г., определяющего тот или иной признак.

  В первой четверти 20 в. Г. описывали как элементарную, неделимую единицу наследственности, управляющую развитием одного признака, передающуюся целиком при кроссинговере и способную к изменению. Дальнейшие исследования (советские учёные А. С. Серебровский, Н. П. Дубинин, И. И. Агол, 1929; Н. П. Дубинин, Н. Н. Соколов, Г. Д. Тиняков, 1934, идр.) выявили сложность строения и дробимость Г. В 1957 американский генетик С. Бензер на фаге Т4 доказал сложное строение Г. и его дробимость; он предложил для единицы функции, определяющей структуру одной полипептидной цепи, название цистрон, для единицы мутации — мутон и для единицы рекомбинации — рекон. В пределах одной функциональной единицы (цистрона) находится большое число мутонов и реконов.

  К 50-м гг. 20 в. были накоплены доказательства того, что материальной основой Г. в хромосомах является ДНК. Английский учёный Ф. Крик и американский — Дж. Уотсон (1953) выяснили структуру ДНК и высказали гипотезу (позже полностью доказанную) о механизме действия Г. ДНК состоит из двух комплементарных т. е. взаимодополняющих) полинуклеотидных цепей, остов которых образуют сахарные и фосфатные остатки; к каждому сахарному остатку присоединяется по одному из четырёх азотистых оснований. Цепи соединены водородными связями, возникающими между основаниями. Водородные связи могут образоваться только между строго определёнными комплементарными основаниями: между аденином и тимином (пара АТ) и гуанином и цитозином (пара ГЦ). Этот принцип спаривания оснований объяснил, как осуществляется точная передача генетической информации от родителей потомкам (см. Репликация), с одной стороны, от ДНК к белкам (см. Трансляция и транскрипция) — с другой.

  Итак, репликация Г. определяет сохранение и неизменную передачу потомкам строения участка ДНК, заключённого в данном Г. (аутокаталитическая функция, или свойство аутосинтеза). Способность задавать порядок нуклеотидов в молекулах информационной РНК (и-РНК) — гетерокаталитическая функция, или свойство гетеросинтеза — определяет порядок чередования аминокислот в синтезируемых белках. На участке ДНК. соответствующем Г., синтезируется в соответствии правилами комплементарности молекула и-РНК; соединяясь с рибосомами, она поставляет информацию для правильной расстановки аминокислот в строящейся цепи белка. Линейный размер Г. связан с длиной полипептидной цепи, строящейся под его контролем. В среднем в состав Г. входит от 1000 до 1500 нуклеотидов (0,0003—0,0005 мм). Американские исследователи А. Бреннер с сотрудниками (1964), Ч. Яновский с сотрудниками (1965) доказали, что между структурой Г. (чередованием нуклеотидов в ДНК) и строением белка, точнее полипептида (чередованием аминокислот в нём), имеется строгое соответствие (т. н. колинеарность ген — белок).

Перейти на страницу:

Похожие книги

100 знаменитых символов советской эпохи
100 знаменитых символов советской эпохи

Советская эпоха — яркий и очень противоречивый период в жизни огромной страны. У каждого из нас наверняка своё ощущение той эпохи. Для кого-то это годы спокойствия и глубокой уверенности в завтрашнем дне, это время, когда большую страну уважали во всём мире. Для других, быть может, это период страха, «железного занавеса», время, бесцельно потраченное на стояние в бесконечных очередях.И всё-таки было то, что объединяло всех. Разве кто-нибудь мог остаться равнодушным, когда из каждой радиоточки звучали сигналы первого спутника или когда Юрий Левитан сообщал о полёте Юрия Гагарина? Разве не наворачивались на глаза слёзы, когда олимпийский Мишка улетал в московское небо? И разве не переполнялась душа гордостью за страну, когда наши хоккеисты побеждали родоначальников хоккея канадцев на их же площадках или когда фигуристы под звуки советского гимна стояли на верхней ступени пьедестала почёта?Эта книга рассказывает о тех знаменательных событиях, выдающихся личностях и любопытных деталях, которые стали символами целой эпохи, ушедшей в прошлое…

Андрей Юрьевич Хорошевский

История / Энциклопедии / Образование и наука / Словари и Энциклопедии