Читаем Большая Советская Энциклопедия (ГР) полностью

  Идентификационные признаки письма (почерка) в целях Г. и. классифицируются: на признаки письменной речи — особенности грамматические (в т. ч. ошибки в словах, в построении предложений и расстановке знаков препинания), лексические [запас слов и особенности словарного состава, например архаизмы, неологизмы, варваризмы (иностранные слова), диалектизмы (слова из местного говора), профессионализмы (характерные для данной профессии), жаргон (условный язык, например «блатная музыка» профессиональных преступников)]; на признаки почерка — топографические (привычные особенности размещения на бумаге текста и его частей — поля, абзацы, интервалы между словами, строками, подписи, даты и т. п.), общие признаки, характеризующие письменно-двигательный навык всей системы письменных движений (выработанность почерка, его размер, наклон, связность, нажим), частные признаки, которые характеризуют индивидуально-устойчивые письменные навыки при автоматизированном исполнении отдельных письменных знаков и их деталей. При проведении Г. и. учитывается неразрывность смысловой и двигательной стороны письма.

  Г. и. составляет основу графической экспертизы (см. Экспертиза судебная ), которая осуществляется в криминалистических экспертных учреждениях (научно-исследовательских институтах и лабораториях судебной экспертизы) по постановлениям следственно-прокурорских органов или по определению суда. См. также Почерковедение судебное .

  Лит.: Буринский Е. Ф., Судебная экспертиза документов, производство ее и пользование ею, СПБ, 1903; Манцветова А. И., Мельникова Э. Б., Орлова В. Ф., Теория и практика криминалистической экспертизы. Экспертиза почерка, М., 1961; Ланцман Р. М., Кибернетика и криминалистическая экспертиза почерка, М., 1968.

  А. И. Винберг.

Графическая статика

Графи'ческая ста'тика, графостатика, учение о графических методах решения задач статики . Методами Г. с. путём соответствующих геометрических построений могут определяться искомые силы, изгибающие моменты, центры тяжести и моменты инерции плоских фигур и др. С использованием Д'Аламбера принципа методы Г. с. могут применяться к решению задач динамики . Г. с. пользуются в строительной механике при расчётах балок, ферм и др. конструкций, а также при расчётах усилий в различных деталях механизмов и машин. По точности расчётов методы Г. с. значительно уступают аналитическим (численным) методам и с появлением ЭВМ утратили былое значение.

  С. М. Тарг.

Графические вычисления

Графи'ческие вычисле'ния, методы получения численных решений различных задач путём графических построений. Г. в. (графическое умножение, графическое решение уравнений, графическое интегрирование и т. д.) представляют систему построений, повторяющих или заменяющих с известным приближением соответствующие аналитические операции. Графическое выполнение этих операций требует каждый раз последовательности построений, приводящих в результате к графическому определению искомой величины. При Г. в. используются графики функций. Г. в. находят применение в приложениях математики. Достоинства Г. в. — простота их выполнения и наглядность. Недостаток — малая точность получаемых ответов. Однако в большом числе задач, особенно в инженерной практике, точность Г. в. вполне достаточна. Графические методы с успехом могут быть использованы для получения первых приближении, уточняемых затем аналитически. Иногда Г. в. называются вычисления, производимые при помощи номограмм. Это не совсем правильно, т. к. номограммы являются геометрическими изображениями функциональных зависимостей и не требуют для нахождения численных значений функции каких-либо построений (см. Номография ).

  Вычисление алгебраических выражений . Числа при Г. в. обычно изображаются направленными отрезками на прямой. Для этого выбирают единичный отрезок (длина его называется масштабом построения). Одно из направлений на прямой принимают за положительное. В этом направлении откладывают отрезки, изображающие положительные числа; отрицательные числа изображаются отрезками, имеющими противоположное направление. На рис. 1 показаны отрезки M0 M , A0 A и B0 B , соответствующие числам 1, 3 и —4 (положительное направление здесь слева направо).

  Для нахождения суммы чисел соответствующие им отрезки откладывают на прямой один за другим так, чтобы начало следующего совпадало с концом предыдущего. Отрезок, началом которого является начало первого отрезка и концом — конец последнего, будет изображать сумму. Разность чисел находят, строя сумму отрезка, изображающего первое число, и отрезка, изображающего число, противоположное второму.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука