Читаем Большая Советская Энциклопедия (ГР) полностью

  Графическое дифференцирование . График производной можно строить по значениям тангенса угла наклона касательной к графику данной функции в различных его точках. Точность такого построения мала из-за больших погрешностей при определении направлений касательных. График производной строят также по секущим, повторяя в обратном порядке процесс графического интегрирования, изображенный на рис. 7 . Для этого график функции (рис. 8 ) разбивают на части прямыми, параллельными оси Оу и проведёнными через равные расстояния Dx. Через точки деления A 1 , A 2 , ... проводят отрезки AB 1 , A 2 B 2 , …, параллельные оси Ox . Отрезки B 1 A1 , B 2 A 2 , ... равны соответствующим приращениям функции. Их откладывают от оси Ox . По полученным точкам  строят ступенчатую ломаную. Затем проводят кривую, следя за тем, чтобы криволинейные треугольники в пределах одной ступени ломаной имели равные площади. Эта кривая и является графиком производной.

  Графическое интегрирование дифференциальных уравнений. Дифференциальное уравнение первого порядка dy /dx = f (x , у ) определяет на плоскости поле направлений. Задача интегрирования уравнения заключается в проведении кривых, касательные к которым имеют направления поля. Различные приёмы графического интегрирования состоят в последовательном построении интегральных кривых по касательным, направления которых заданы, и в известной мере повторяют численные методы интегрирования (см. Приближённое решение дифференциальных уравнений).

  Лит.: Головинин Д. Н., Графическая математика, М. — Л., 1931; Рунге К., Графические методы математических вычислений, пер. с нем., М. — Л., 1932.

  М. В. Пентковский.

Графическое решение уравнения j1 (x ) = j2 (x ).

Рис. 8. Графическое дифференцирование.

Рис. 1. Изображение чисел 1, 3 и —4 направленными отрезками на прямой.

Рис. 2. Графическое умножение и деление: с = аb , b = с /а .

Рис. 6—7. Графическое интегрирование.

Рис. 4. Графическое решение кубического уравнения x3 — 2,67х — 1 = 0.

Рис. 5. Графическое решение уравнения 4-йстепени: x4 — 2,6x2 — 0,8x — 0,6 = 0.

Графические методы

Графи'ческие ме'тоды в управлении производством, совокупность способов условного (графического) изображения какого-либо организационного или управленческого явления на производстве. Впервые применены американскими инженерами ф. У. Тейлором и Г. Л. Гантом в начале 20 в. в качестве одного из методов организации руководства производством. В СССР Г. м. в управлении производством начали применять в 20-х гг.

  С помощью Г. м. решаются задачи моделирования процессов управления, выявляются и рационализируются взаимосвязи между различными факторами, определяются расчётные показатели и нормативы, выполняются контроль и учёт, группировка и классификация хозяйственных операций, информация представляется в наглядном виде.

  В управлении производством используются графики иллюстративно-информационные, оперативные, аналитические и расчётные. Иллюстративно-информационные содержат строго подобранные и предварительно проанализированные данные, отражающие фактическое состояние управляемых процессов (рис. 1 , 2 и 8, А); оперативные графики служат для быстрого принятия решений и содержат для этого всю сумму информации на определенный момент (рис. 8 , Б); аналитические графики содержат сведения, полученные после логической и математической обработки данных (рис. 3 ); расчётные графики (например, номограммы ) несут информацию, позволяющую получать функцию, зависящую от большого числа переменных.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука