Я. р. под действием дейтронов
характеризуются наиболее высоким выходом по сравнению с др. Я. р. под действием заряженных частиц. Например, выход реакции 9
Be (d, n)10
. В при энергии дейтрона xd
16 Мэв
достигает 0,02, а для Я. р. с другими заряженными частицами таких энергий — порядка 10-3
— 10-6
. Я. р. с дейтронами могут протекать с образованием составного ядра, путём расщепления дейтрона кулоновским полем ядра мишени и прямым механизмом срыва. Эффективные сечения этих трёх процессов примерно одного порядка. Т. к. в дейтроне среднее расстояние между протоном и нейтроном относительно велико, а их энергия связи мала, то при бомбардировке ядер дейтронами наиболее вероятен захват ядром лишь одного из нуклонов дейтрона, тогда как второй пролетает дальше, не испытав взаимодействия с ядром. В этом случае Я. р. осуществляется не внутри ядра, а на его поверхности. Протоны и нейтроны, образующиеся в Я. р. срыва, летят в основном вперёд. Дейтроны, ускоряемые в циклотронах, широко используются для получения радиоактивных нуклидов и интенсивных потоков нейтронов (см. Нейтронные источники
).
Я. р. между легчайшими ядрами имеют заметный выход даже при малых энергиях налетающих частиц (порядка 1—10 кэв
). Поэтому они могут осуществляться не только бомбардировкой мишени пучком ускоренных частиц, но и нагреванием смеси взаимодействующих ядер до температуры ~ 107
К (см. Термоядерные реакции
).
Я. р. под действием частиц высоких энергий
(значительно больших, чем энергия связи нуклонов в ядре). Частицам с энергией ~ 100 Мэв
соответствует = 0,43 ф
, малая по сравнению со средним межнуклонным расстоянием в ядре (1,9 ф
). Это позволяет «зондировать» ядро: в первом приближении можно считать, что влетающий в ядро нуклон взаимодействует в каждый момент времени только с одним нуклоном и при этом так, как будто он свободен. Важная особенность Я. р. под действием частиц высоких энергий — возможность передать даже лёгкому ядру возбуждение ~ 100 Мэв
.
При взаимодействии быстрого нуклона с ядром он может испытывать упругое рассеяние и вызывать Я. р. Сечение упругого рассеяния sy
плавно зависит от энергии налетающих частиц. Полное сечение взаимодействия быстрых нуклонов sполн
меняется в пределах от 2pR2
до pR2
. При энергии нуклона > 150 Мэв
sy
=
1/3 sполн
, а сечение Я. р. sз
= 1
/3
sполн
. Т. о., ядро ведёт себя не как абсолютно поглощающая среда (в этом случае sy
= sp
). Угловые распределения упруго рассеянных частиц сходны с дифракционной картиной, имеется ярко выраженная направленность вперёд. Большая энергия налетающей частицы может распределиться между многими нуклонами ядра. При этом часть из них приобретает энергию, достаточную, чтобы покинуть ядро. При взаимодействии частицы высокой энергии с ядром может развиться внутриядерный каскад, в результате которого испускается несколько энергичных частиц, а оставшаяся часть оказывается сильно возбуждённым составным ядром, которое, распадаясь, испускает частицы малых энергий. Среднее число испускаемых частиц растет с увеличением энергии первичной частицы. В ходе Я. р., кроме нуклонов, могут (с меньшей вероятностью) испускаться более тяжёлые ядерные осколки (дейтроны, тритоны, a-частицы). Я. р., в которой испускается множество заряженных частиц, образует в ядерной фотографической эмульсии многолучевую звезду. В таких Я. р. образуется большое число разнообразных радиоактивных продуктов, для исследования которых применяются методы радиохимии.
Под действием быстрых частиц наблюдают и более простые Я. р.: неупругое рассеяние (p, p'), Я. р. «перезарядки» (p, n), Я. р. «подхвата» (p, d), Я. р. «выбивания» (p, 2p) и др. Вклад этих процессов в полное сечение Я. р. невелик ( ~ 10—20%). Реакция выбивания протона (p, 2p) оказалась очень удобной для исследования структуры ядер. Измеряя энергию вылетающих протонов, можно определить потерю энергии в Я. р. и энергию связи выбитого протона. В распределении по энергиям остаточных ядер наблюдаются максимумы, соответствующие возбуждённым уровням остаточного ядра. Энергия возбуждения этих уровней достигает 50—70 Мэв
, и они соответствуют дырочным возбуждениям глубоких оболочек (см. Ядро атомное
).
Кулоновское возбуждение ядер.
Протоны и более тяжёлые ионы, движущиеся слишком медленно, для того чтобы преодолеть кулоновский барьер, приближаясь к ядру, создают относительно медленно меняющееся электрическое поле, которое действует на протоны ядра. В этих случаях ядро, поглощая электромагнитную энергию, переходит в возбуждённое состояние, а налетающий ион теряет часть своей энергии. Кулоновское возбуждение — одно из основных средств изучения низколежащих коллективных состояний ядер.