Читаем Большая Советская Энциклопедия (ХА) полностью

  В теории новое понимание художественного Х. было выдвинуто Гегелем: Х. — «... цельная человеческая индивидуальность...», в которой раскрываются те или иные «... всеобщие субстанциальные силы действия»; Х. является «подлинным средоточием» изображения, поскольку он объединяет в себе всеобщность и индивидуальность «... в качестве моментов своей целостности». Х. должен обнаруживаться во всём богатстве своих индивидуальных особенностей, а не быть «... игралищем лишь одной страсти...», ибо в таком случае он «... выступает как существующий вне себя...»; он должен быть «... целым самостоятельным миром, полным, живым человеком, а не аллегорической абстракцией какой-нибудь одной черты характера» («Эстетика», т. 1, М., 1968, с. 244—46). Эта теория, опиравшаяся на художественные достижения прошлого, во многом предвосхищала практику последующей реалистической литературы, где присутствует саморазвивающийся Х. — незавершённая и незавершимая, «текучая» индивидуальность, определяемая её непрерывным взаимодействием с исторически конкретными обстоятельствами.

  Послегегелевская литературная теория, опиравшаяся на реалистическое искусство, настойчиво подчёркивала значение индивидуально-конкретного в Х., но главное — выдвинула и разработала проблему его «концептуальности», установила необходимость «присутствия» авторского идеологического понимания в изображении Х. В реалистической литературе 19—20 вв. Х. действительно воплощают различные, порой противоположные авторские концепции человеческой личности. У О. Бальзака первоосновой индивидуальности выступает понимаемая в духе антропологизма общечеловеческая природа, а её «текучесть» объясняется незавершимостью внешних воздействий среды на первооснову, мерой которых и «измеряется» индивидуальность личности. У Ф. М. Достоевского индивидуальность воспринимается на фоне детерминизма обстоятельств как мера личностного само определения, когда Х. героя остаётся неисчерпаемым средоточием индивидуальных возможностей. Иной смысл «незавершённости» Х. у Л. Н. Толстого: потребность «ясно высказать текучесть человека, то, что он, один и тот же, то злодей, то ангел, то мудрец, то идиот, то силач, то бессильнейшее существо» (Полное собрание соч., т. 53, 1953, с. 187), объясняется стремлением открыть в индивидуальности, отчуждаемой от других людей общественными условиями жизни, общечеловеческое, родовое, «полного человека».

  У представителей «нового романа» намечается отказ от художественной индивидуальности в пользу безличной психологии (как следствия отчуждения и конформизма ), для воспроизведения которой Х. начинает играть служебную роль «подпорки».

  Творчество писателей социалистического реализма , наследуя характерологические достижения предшествующих направлений и прежде всего реалистов 19 в., утверждает новое «видение» детерминирующих обстоятельств: социально-историческую и политическую действительность в её революционном развитии, в связи с чем социально-психологическая индивидуальность Х. в их произведениях сгущается в индивидуальность конкретно-историческую. В литературе 60—70-х гг. 20 в. акцентируется нравственная активность личности, её ответственность за свой духовный мир и судьбы других людей.

  Лит.: Гегель, Эстетика, т. 1, М., 1968, с. 244—53; Социалистический реализм и классическое наследие. (Проблема характера). Сб. ст., М., 1960; Проблема характера в современной советской литературе, М. — Л., 1962; Бочаров С. Г., Характеры и обстоятельства, в кн.: Теория литературы [кн. 1], М., 1962; Бахтин М. М., Проблемы поэтики Достоевского, 3 изд., М., 1972, с. 78—129; его же, Эпос и роман, в его кн.: Вопросы литературы и эстетики, М., 1975; Лихачев Д. С., Человек в литературе древней Руси, [2 изд.], М., 1970; Гинзбург Л., О психологической прозе [Л.], 1971; Аверинцев С. С., Плутарх и античная биография, М., 1973.

  В. И. Тюпа.

Характеристика (в математике)

Характери'стика в математике, 1) целая часть десятичного логарифма .

  2) Понятие теории дифференциальных уравнений с частными производными.

  Х. дифференциального уравнения 1-го порядка

,     (1)

где Р = P (x , y , z ), Q=Q (x , y , z ), R=R (x , y , z ) заданные функции, называются кривые, определяемые системой обыкновенных дифференциальных уравнений

.     (2)

Перейти на страницу:

Похожие книги