В К. изучают также сложное движение точек или тел, то есть движение, рассматриваемое одновременно по отношению к двум (и более) взаимно перемещающимся системам отсчета. При этом одну из систем отсчета рассматривают как основную (ее еще называют условно неподвижной), а перемещающуюся по отношению к ней систему отсчёта называют подвижной; в общем случае подвижных систем отсчёта может быть несколько.
При изучении сложного движения точки её движение, а также скорость и ускорение по отношению к основной системе отсчёта называют условно абсолютными, а по отношению к подвижной системе — относительными. Движение самой подвижной системы отсчёта и всех неизменно связанных с ней точек пространства по отношению к основной системе называют переносным движением, а скорость и ускорение той точки подвижной системы отсчёта, с которой в данный момент совпадает движущаяся точка, называют переносной скоростью и переносным ускорением. Например, если основную систему отсчета связать с берегом, а подвижную с пароходом, идущим по реке, и рассмотреть качение шарика по палубе парохода (считая шарик точкой), то скорость и ускорение шарика по отношению к палубе будут относительными, а по отношению к берегу — абсолютными; скорость же и ускорение той точки палубы, которой в данный момент касается шарик, будут для него переносными. Аналогичная терминология используется и при изучении сложного движения твёрдого тела.
Основные задачи К. сложного движения заключаются в установлении зависимостей между кинематическими характеристиками абсолютного и относительного движений точки (или тела) и характеристиками движения подвижной системы отсчета, то есть переносного движения. Для точки эти зависимости являются следующими: абсолютная скорость точки равна геометрической сумме относительной и переносной скоростей, т. е.
а абсолютное ускорение точки равно геометрической сумме трёх ускорений — относительного, переносного и поворотного, или кориолисова (см.
Для твердого тела, когда все составные (то есть относительные и переносные) движения являются поступательными, абсолютное движение также является поступательным со скоростью, равной геометрической сумме скоростей составных движений. Если составные движения тела являются вращательными вокруг осей, пересекающихся в одной точке (как, например, у гироскопа), то результирующее движение также является вращательным вокруг этой точки с мгновенной угловой скоростью, равной геометрической сумме угловых скоростей составных движений. Если же составными движениями тела являются и поступательные, и вращательные, то результирующее движение в общем случае будет слагаться из серии мгновенных винтовых движений (см.
Рис. 1 к ст. Кинематика.
Рис. 4 к ст. Кинематика.
Рис. 2 к ст. Кинематика.
Рис. 3 к ст. Кинематика.
Кинематика звёздных систем
Кинема'тика звёздных систе'м,
раздел звёздной астрономии; то же, чтоКинематика механизмов
Кинема'тика механи'змов,
раздел теории машин и механизмов, в котором изучают геометрическую сторону движения частей (звеньев) механизма, пренебрегая вызывающими его причинами. Исследования К. м. основываются на положении о том, что любой механизм состоит из подвижно соединённых твёрдых тел — звеньев, движения которых определяются движением одного или нескольких звеньев, называемых ведущими. К. м. решает задачи кинематического анализа и кинематического синтеза (см.