Читаем Большая Советская Энциклопедия (КИ) полностью

  Решение уравнения диффузии позволяет определить время, в течение которого произойдёт выравнивание концентрации молекул в системе (например, в сосуде с газом) за счёт диффузии (время релаксации). Время релаксации tр имеет порядок: tр ~ L2 /D, где L — линейные размеры сосуда, a D — коэффициент диффузии. Это время тем больше, чем больше размеры сосуда и чем меньше коэффициент диффузии. Коэффициент диффузии пропорционален длине свободного пробега молекул l и их средней тепловой скорости n. Поэтому время релаксации оказывается пропорциональным: tр ~ L2 / ln = (L/l )2 l/n, где l/n = t — среднее время свободного пробега. Очевидно, что tр >> t при L >> l . Таким образом, условие L >> l (размеры системы велики по сравнению с длиной свободного пробега молекул) является необходимым для того, чтобы процесс установления равновесного состояния можно было считать медленным. Аналогичным образом устанавливаются уравнения, описывающие теплопроводность, внутреннее трение, электропроводность и т.д. Коэффициент диффузии, теплопроводности и вязкости, а также удельная электропроводность в феноменологической теории должны быть определены экспериментально.

  Перечисленные процессы называются прямыми. Этим подчёркивается, что, например, при диффузии градиент концентрации данного вещества вызывает поток этого же вещества; градиент температуры вызывает поток внутренней энергии, которая при постоянной концентрации молекул меняется только с температурой; электрический ток вызывается градиентом потенциала и т.д. Кроме прямых процессов, существуют ещё так называемые перекрёстные процессы. Примером перекрёстного процесса может служить термодиффузия — перенос вещества не вследствие градиента концентрации (это была бы обычная диффузия), а вследствие градиента температуры. Термодиффузия создаёт градиент концентрации, что приводит к появлению обычной диффузии. Если разность температур в системе поддерживается постоянной, то устанавливается стационарное состояние, при котором потоки вещества, вызванные градиентами температуры и концентрации, взаимно уравновешиваются. В смеси газов при этом концентрация молекул в местах повышенной температуры оказывается большей для молекул меньшей массы (данное явление используется для разделения изотопов ).

  Градиент концентрации в свою очередь создаёт поток внутренней энергии. В этом состоит процесс диффузионной теплопроводности. При наличии в теле заряженных частиц градиент температуры создаёт упорядоченное перемещение этих частиц — электрический ток, называемый термоэлектрическим (см. Термоэлектрические явления ).

  В К. ф. важное значение имеет принцип симметрии кинетических коэффициентов, установленный Л. Онсагером . В равновесном состоянии термодинамические параметры a i (давление, температура и т.д.), характеризующие состояние макроскопической системы, постоянны во времени: dai /dt = 0. Важнейшая функция состояния системы — энтропия S , зависящая от ai , в состоянии равновесия имеет максимум и, следовательно, её частные производные ¶S/¶aj = 0. При малом отклонении системы от равновесия производные ¶S/¶aj и ¶a/¶t малы, но отличны от нуля, и между ними существуют приближённые линейные соотношения. Коэффициенты пропорциональности в этих соотношениях и есть кинетические коэффициенты. Если через gik обозначить коэффициент, определяющий скорость изменения параметра системы a i зависимости от , то, согласно принципу Онсагера (в отсутствие магнитного поля и вращения системы как целого), имеет место равенство g ik = g ki . Принцип Онсагера вытекает из свойства микроскопической обратимости, которая выражается в инвариантности уравнений движения частиц системы относительно замены знака времени: t ® —t (см. Онсагера теорема ). Из этого принципа, в частности, следует существование связи между коэффициентами, определяющим выделение током тепла из-за неравномерного нагрева проводника (Томсона эффект), и коэффициентами, определяющим выделение током тепла в спаях разнородных проводников или полупроводников (Пельтье эффект).

  Статистический метод описания неравновесных процессов.

  Статистическая теория неравновесных процессов является более детальной и глубокой, чем термодинамическая. В отличие от термодинамического метода, статистическая теория на основе определенных представлений о строении вещества и действующих между молекулами силах позволяет вычислить кинетические коэффициенты, определяющие интенсивность процессов диффузии, внутреннего трения (вязкости ), электропроводности и т.д. Однако эта теория весьма сложна.

Перейти на страницу:

Похожие книги

100 знаменитых мистических явлений
100 знаменитых мистических явлений

Человека всегда привлекала мистика, все загадочное и необъяснимое, будь то Священный Грааль, Копье Всевластия или хрустальные черепа древних инков, обладающие совершенно непостижимыми свойствами и характеристиками. Но самое удивительное заключается в том, что подобные загадочные явления имели место не только в прошлом, они окружают нас и сегодня. Именно об этом и рассказывает наша книга, прочитав которую, вы узнаете о людях и целых поездах, затерявшихся во времени и пространстве; о загадочной алтайской принцессе, с которой связывают природные катаклизмы; об НЛО, появляющихся не только в небе, но и в океане; а также о контактах людей с пришельцами из иных миров.

Валентина Марковна Скляренко , Владимир Владимирович Сядро , Оксана Юрьевна Очкурова , Яна Александровна Батий

Энциклопедии / Словари и Энциклопедии
100 великих казней
100 великих казней

В широком смысле казнь является высшей мерой наказания. Казни могли быть как относительно легкими, когда жертва умирала мгновенно, так и мучительными, рассчитанными на долгие страдания. Во все века казни были самым надежным средством подавления и террора. Правда, известны примеры, когда пришедшие к власти милосердные правители на протяжении долгих лет не казнили преступников.Часто казни превращались в своего рода зрелища, собиравшие толпы зрителей. На этих кровавых спектаклях важна была буквально каждая деталь: происхождение преступника, его былые заслуги, тяжесть вины и т.д.О самых знаменитых казнях в истории человечества рассказывает очередная книга серии.

Елена Н Авадяева , Елена Николаевна Авадяева , Леонид Иванович Зданович , Леонид И Зданович

История / Энциклопедии / Образование и наука / Словари и Энциклопедии