Читаем Большая Советская Энциклопедия (КИ) полностью

  Статистический метод описания систем как в равновесном, так и неравновесном состоянии основан на вычислении функции распределения. Для равновесных состояний имеются универсальные функции распределения координат и импульсов (или скоростей) всех частиц, определяющие вероятность того, что эти величины принимают фиксированные значения. Для систем, находящихся в тепловом контакте с окружающей средой, температура которой постоянна, это — каноническое Гиббса распределение , а для изолированных систем — микроканоническое Гиббса распределение; оба распределения полностью определяются энергией системы.

  Неравновесные состояния в гораздо большей степени (чем равновесные) зависят от микроскопических свойств систем: свойств атомов и молекул и сил взаимодействия между ними. Лишь в 50—60-е гг. были разработаны общие методы построения функций распределения (по координатам и импульсам всех частиц системы), аналогичных каноническому распределению Гиббса, но описывающих неравновесные процессы.

  С помощью функций распределения можно определить любые макроскопические величины, характеризующие состояние системы, и проследить за их изменением в пространстве с течением времени. Это достигается вычислением статистических средних (см. Статистическая физика ). Нахождение функции распределения, зависящей от координат и импульсов всех частиц, является в общем случае неразрешимой задачей, т.к. оно эквивалентно решению уравнений движения для всех частиц системы. Однако для практических целей нет необходимости в знании точного вида этой функции распределения: она содержит слишком подробную информацию о движении отдельных частиц, которая не существенна для определения поведения системы в целом. В связи с этим используется приближенное статистическое описание с помощью более простых функций распределения. Для описания состояния газов средней плотности достаточно знания так называемой одночастичной функции распределения f (p, r, t ), дающей среднее число частиц с определёнными значениями импульсов р (или скоростей n ) и координат r. Для газов более высокой плотности необходимо знание двухчастичных (парных) функций распределения. Общий метод получения уравнений для одночастичных и более сложных функций (зависящих от координат и импульсов двух и более частиц) был разработан Н. Н. Боголюбовым , М. Борном , М. Грином и др. Эти уравнения называются кинетическими. К их числу относится кинетическое уравнение Больцмана для разреженных газов, полученное Л. Больцманом из соображений, основанных на балансе частиц со скоростями в интервалах Dnx , Dny , Dnz внутри объёма Dх Dy Dz (nx , ny , nz — проекции скорости n на координатные оси х, у, z ). Разновидностями уравнения Больцмана для ионизированного газа (плазмы) являются кинетические уравнения Л. Д. Ландау и А. А. Власова (см. Плазма ).

  Кинетические уравнения могут быть построены не только для газов, но и для малых возбуждений в конденсированных системах. Тепловое движение системы характеризуется различного рода возбуждениями. В газе это — поступательное движение составляющих его частиц и внутренние возбуждения атомов и молекул. В общем случае тепловое движение характеризуется возбуждениями более сложной природы. Так, в кристаллических телах тепловое возбуждение можно представить в виде упругих волн, распространяющихся вдоль кристалла, точнее — волн, соответствующих нормальным колебаниям кристаллической решётки . В плазме коллективными возбуждениями являются колебания плотности электрического заряда, вызванные дальнодействующими кулоновскими силами. В металлах возможны электронные возбуждения (переходы электронов из состояний внутри Ферми поверхности в состояния вне её), а в полупроводниках — ещё и дырочные возбуждения (появление свободных от электронов состояний в валентной зоне при переходе электронов в зону проводимости; см. Полупроводники ). При низких температурах, в слабовозбуждённом состоянии, энергию возбуждения всегда можно представить в виде суммы некоторых элементарных возбуждений, или, на квантовом языке, квазичастиц . Понятие о квазичастицах применимо не только для кристаллических тел, но и для жидких, газообразных и аморфных, если температура не слишком велика. Функции распределения для квазичастиц системы, находящейся в неравновесном состоянии, удовлетворяют кинетическому уравнению.

  В случае квантовых систем функция распределения зависит от спина частиц (или квазичастиц). В частности, для частиц с полуцелым спином равновесной функцией распределения служит распределение Ферми — Дирака, а для частиц (квазичастиц) с целым или нулевым спином — распределение Бозе — Эйнштейна (см. Статистическая физика ).

Перейти на страницу:

Похожие книги

100 знаменитых мистических явлений
100 знаменитых мистических явлений

Человека всегда привлекала мистика, все загадочное и необъяснимое, будь то Священный Грааль, Копье Всевластия или хрустальные черепа древних инков, обладающие совершенно непостижимыми свойствами и характеристиками. Но самое удивительное заключается в том, что подобные загадочные явления имели место не только в прошлом, они окружают нас и сегодня. Именно об этом и рассказывает наша книга, прочитав которую, вы узнаете о людях и целых поездах, затерявшихся во времени и пространстве; о загадочной алтайской принцессе, с которой связывают природные катаклизмы; об НЛО, появляющихся не только в небе, но и в океане; а также о контактах людей с пришельцами из иных миров.

Валентина Марковна Скляренко , Владимир Владимирович Сядро , Оксана Юрьевна Очкурова , Яна Александровна Батий

Энциклопедии / Словари и Энциклопедии
100 великих казней
100 великих казней

В широком смысле казнь является высшей мерой наказания. Казни могли быть как относительно легкими, когда жертва умирала мгновенно, так и мучительными, рассчитанными на долгие страдания. Во все века казни были самым надежным средством подавления и террора. Правда, известны примеры, когда пришедшие к власти милосердные правители на протяжении долгих лет не казнили преступников.Часто казни превращались в своего рода зрелища, собиравшие толпы зрителей. На этих кровавых спектаклях важна была буквально каждая деталь: происхождение преступника, его былые заслуги, тяжесть вины и т.д.О самых знаменитых казнях в истории человечества рассказывает очередная книга серии.

Елена Н Авадяева , Елена Николаевна Авадяева , Леонид Иванович Зданович , Леонид И Зданович

История / Энциклопедии / Образование и наука / Словари и Энциклопедии