Кристаллохимический анализ строения вещества имеет два аспекта: стереохимический и кристаллоструктурный. В рамках первого обсуждаются величины кратчайших межатомных расстояний и значения валентных углов. При этом пользуются понятиями координационного числа
(число ближайших соседей данного атома) и координационного многогранника. Для атомов многих элементов, склонных к ковалентному характеру связи, типичны определённые координационные числа и координационные многогранники, что обусловлено направленностью ковалентных связей. Так, атом Be, за редким исключением, имеет координационное число 4 (тетраэдр); для атома Cd характерно наличие шести ближайших соседей, расположенных по октаэдру; для двухвалентного Pd — четырёх, занимающих вершины квадрата (например, в структуре PdCl2). Для объяснения подобных закономерностей обычно используются методы квантовой механики (см. Квантовая химия). Кристаллоструктурный аспект включает в себя исследование относительного расположения фрагментов структуры (и одноатомных ионов) в пространстве кристаллического вещества. В случае молекулярных кристаллов исследуется укладка молекул. Причины образования той или иной кристаллической структуры определяются общим принципом термодинамики: наиболее устойчива структура, которая при данном давлении и данной температуре имеет минимальную свободную энергию. Приближённые расчёты свободной энергии и предсказание наиболее выгодной структуры возможны пока лишь для сравнительно простых случаев, причём точность расчёта значительно ниже точности эксперимента. В области исследований зависимости свойств кристаллов от их строения К. перекрывается с кристаллофизикой
и физикой твёрдого тела.
Лит.:
Белов Н. В., Структура ионных кристаллов и металлических фаз, [М.], 1947; Бокий Г. Б., Кристаллохимия, 3 изд., М., 1971; Китайгородский А. И., Органическая кристаллохимия, М., 1955; Киттель Ч., Введение в физику твердого тела, пер. с англ., 2 изд., М., 1962; Ормонт Б. Ф., Введение в физическую химию и кристаллохимию полупроводников, М., 1968; Кребс Г., Основы кристаллохимии неорганических соединений, пер. с нем., М., 1971. П. М. Зоркий.
Кристаллы в клетках растений
Криста'ллы
в клетках растений, кристаллические отложения в полостях или оболочках живых или отмерших клеток, состоящие главным образом из щавелевокислого Ca, кремнезёма — SiO2, реже — белков, каротинов и др. Встречаются: одиночные К., скопления мелких К. — «песок», сростки К. — друзы, игольчатые К. — стелоиды и рафиды. Некоторые К. присутствуют лишь в особых, более крупных клетках. К. могут заполнять клетки целиком, деформируя их. Кремнезём откладывается преимущественно в оболочках клеток, часто в кожице (хвощи, злаки). К. белка встречаются в ядрах, пластидах, алейроновых зёрнах, К. каротина — в хромопластах. Много К. скапливается в отмерших клетках листьев и коры. Форма и расположение К. специфичны для ряда растений, что может иметь значение для их систематики.Кристаллы в клетках растений: а — простой кристалл; б и в — друзы (сростки кристаллов).
Кристаллы (физич.)
Криста'ллы
(от греч. kr'ystallos, первоначально — лёд, в дальнейшем — горный хрусталь, кристалл), твёрдые тела, имеющие естественную форму правильных многогранников (рис. 1). Эта форма — следствие упорядоченного расположения в К. атомов, образующих трёхмерно-периодическую пространственную укладку — кристаллическую решетку. К. — равновесное состояние твёрдых тел. Каждому химическому веществу, находящемуся при данных термодинамических условиях (температуре, давлении) в кристаллическом состоянии, соответствует определённая кристаллическая атомная структура. К. обладают той или иной симметрией атомной структуры, соответствующей ей макроскопической симметрией внешней формы, а также анизотропией физических свойств. К., выросший в неравновесных условиях и не имеющий правильной огранки или потерявший её в результате той или иной обработки, сохраняет основной признак кристаллического состояния — решётчатую атомную структуру и все определяемые ею свойства. Большинство природных или технических твёрдых материалов являются поликристаллическими, они состоят из множества отдельных, беспорядочно ориентированных, мелких кристаллических зёрен, иногда называемых кристаллитами. Таковы, например, многие горные породы, технические металлы и сплавы. Одиночные кристаллы (природные или синтетические) называются монокристаллами.