Атомная структура К.
Внешняя форма К., принадлежность его к тому или иному классу и сингоний определяются его кристаллической решёткой с характерной для неё симметрической операцией бесконечно повторяющихся переносов (трансляций). Вследствие этого, кроме упоминавшихся выше операции симметрии (поворотов вокруг осей симметрии, плоскостей, центра), в структуре К. возможны операции симметрии с бесконечным переносом, например винтовые оси симметрии, плоскости скользящего отражения и т. п. То или иное определённое их сочетание есть пространственная (фёдоровская) группа симметрии структуры кристалла. Всего существует 230 фёдоровских групп, распределённых среди 32 классов симметрии К. Методы структурного анализа К. (рентгеноструктурный анализ, электронография, нейтронография
) позволяют определить размеры элементарной ячейки К., федоровскую группу, расположение атомов в ячейке (расстояние между ними), характер тепловых колебаний атомов, распределение электронной плотности между атомами, ориентацию магнитных моментов и т. п. Уже изучена атомная кристаллическая структура более 20 тыс. соединений — от К. элементов до сложнейших К. белков (см. табл. и рис. 10). Кристаллы | Периоды ячеек | Число атомов в элементарной ячейке |
Элементы, простейшие соединения. | 3—5 | ~10 |
Неорганические соединения, простые молекулярные соединения | 5—15 | до 100 |
Сложные молекулярные соединения (витамины, стероиды и др.) | 20—30 | до 1000 |
Белки | до 100—200 | 103—104 |
Вирусы | до 2000 | 106—109 |
Обобщение этого колоссального материала является предметом кристаллохимии.
Кристаллические структуры классифицируют по их химическому составу, в основном определяющему тип химической связи, по соотношению компонент в химической формуле (например, элементы, соединения AX, AX2, ABX3и т. п.), по взаимной координации атомов (слоистые, цепные, координационные решётки). При изменении температуры или давления структура К. может изменяться. Некоторые кристаллические структуры (фазы) являются метастабильными. Существование у данного вещества нескольких кристаллических фаз, а значит и К. с разной структурой, называется полиморфизмом (белое и серое олово, алмаз
и графит, различные модификации кварца и т. п.). Наоборот, разные соединения могут иметь одинаковую кристаллическую структуру — быть изоструктурными (см. Изоморфизм).
Распределение К. по пространственным группам (соответственно по классам и сингониям) неравномерно. Как правило, чем проще химическая формула вещества, тем выше симметрия его К. Так, почти все металлы имеют кубическую или гексагональную структуру, то же относится к простым химическим соединениям, например щёлочно-галоидным и др. Усложнение химической формулы вещества ведёт к понижению симметрии его К. Органические (молекулярные) К. почти всегда относятся к низшим сингониям. Тип химической связи между атомами в К. определяет многие их свойства. Ковалентные К. с локализованными на прочных связях электронами имеют высокую твёрдость,
малую электропроводность, большие показатели преломления. Наоборот, металлические К. со свободными электронами хорошо проводят электрический ток и тепло, пластичны, непрозрачны. Промежуточные характеристики — у ионных К. Наиболее слабые (вандер-ваальсовы) связи — в молекулярных К. Они легкоплавки, механические характеристики их низки. Атомную упорядоченность, более низкую, чем у К., имеют жидкие кристаллы, аморфные тела и стекла (см. Аморфное состояние, Полимеры). Структура реальных К
. Вследствие нарушения равновесных условий роста, захвата примесей при кристаллизации, под влиянием различного рода воздействий идеальная структура К. всегда имеет те или иные нарушения. К ним относят точечные дефекты, т. е. вакансии (пропуски атомов), замещения атомов основной решётки атомами примесей, внедрение в решётку инородных атомов; линейные дефекты, т. е. дислокации (нарушение порядка упаковки атомных слоев, рис. 11), и др. Дозируемое введение небольших количеств атомов примеси, замещающих атомы основной решётки, широко используется в технике для изменения свойств К., например введение в кристаллы Ge и Si атомов III и V групп периодической системы элементов позволяет получать полупроводники с дырочной и электронной электропроводностью. Др. пример — К., применяющиеся в квантовой электронике: рубин, состоящий из AI2O3 и примеси (0,05%) Cr; гранат — из Y3Al5O12 и примеси (0,5%) Nd и др. (см. Лазерные материалы).