Читаем Большая Советская Энциклопедия (КВ) полностью

  Возможна такая математическая формулировка, в которой формальный переход от классической механики к К. м. осуществляется заменой с-чисел соответствующими q-числами. Сохраняются и уравнения движения, но теперь это уравнения для операторов. Из этой формальной аналогии между К. м. и классической механикой можно найти основные коммутационные (перестановочные) соотношения. Так, для координаты и импульса . Отсюда следует соотношение неопределённостей Гейзенберга . Из перестановочных соотношений можно получить, в частности, явный вид оператора импульса, в координатном (х–) представлении. Тогда волновая функция есть y(х), а оператор импульса — дифференциальный оператор

, т. е. .

  Можно показать, что спектр его собственных значений непрерывен, а амплитуда вероятности  есть де-бройлевская волна ( — собственный вектор оператора импульса ). Если задана энергия системы как функция координат и импульсов частиц, Н (р, х), то знание коммутатора  достаточно для нахождения , а также уровней энергии как собственных значений оператора полной энергии .

  На основании определения момента количества движения Mz = хру — урх,... можно получить, что . Эти коммутационные соотношения справедливы и при учёте спинов частиц; их оказывается достаточно для определения собственного значения квадрата полного момента: , где квантовое число j — целое или полуцелое число, и его проекции , m = -j, -j + 1, …, + j.

  Уравнения движения квантовомеханической системы могут быть записаны в двух формах: в виде уравнения для вектора состояния

     (36)

— шрёдингеровская форма уравнения движения, и в виде уравнения для операторов (q-чисел)

     (37)

— гейзенберговская форма уравнений движения, наиболее близкая классической механике. Из гейзенберговской формы уравнений движения, в частности, следует, что средние значения физических величин изменяются по законам классической механики; это положение называется теоремой Эренфеста.

  Для логической структуры К. м. характерно присутствие двух совершенно разнородных по своей природе составляющих. Вектор состояния (волновая функция) однозначно определён в любой момент времени, если задан в начальный момент. В этой части теория вполне детерминистична. Но вектор состояния не есть наблюдаемая величина. О наблюдаемых на основе знания  можно сделать лишь статистические (вероятностные) предсказания. Результаты индивидуального измерения над квантовым объектом в общем случае, строго говоря, непредсказуемы. Предпринимались попытки восстановить идею полного детерминизма в классическом смысле введением предположения о неполноте квантовомеханического описания. Например, высказывалась гипотеза о наличии у квантовых объектов дополнительных степеней свободы — «скрытых параметров», учёт которых сделал бы поведение системы полностью детерминированным в смысле классической механики; неопределённость возникает только вследствие того, что эти «скрытые параметры» неизвестны и не учитываются. Однако Дж. Нейман доказал теорему о невозможности нестатистической интерпретации К. м. при сохранении её основного положения о соответствии между наблюдаемыми (физическими величинами) и операторами.

  Лит.: Классич. труды — Гейзенберг В., Физические принципы квантовой теории, Л. — М., 1932; Дирак П., Принципы квантовой механики, пер. с англ., М., 1960; Паули В., Общие принципы волновой механики, пер. с нем., М. — Л., 1947; Нейман И., Математические основы квантовой механики, пер. с нем., М., 1964. Учебники — Ландау Л. Д., Лифшиц Е. М., Квантовая механика, 2 изд., М., 1963 (Теоретическая физика, т. 3); Блохинцев Д. И., Основы квантовой механики, 4 изд., М., 1963; Давыдов А. С., Квантовая механика, М., 1963; Соколов А. А., Лоскутов Ю. М., Тернов И. М., Квантовая механика, М., 1962; Бом Д., Квантовая теория, пер. с англ., М., 1961; Фейнман Р., Лейтон Р., Сэндс М., Фейнмановские лекции по физике, пер. с англ., в. 8 и 9, М.,1966—67; Шифф Л., Квантовая механика, пер. с англ., 2 изд., М., 1959; Ферми Э., Квантовая механика, пер. с англ., М., 1965. Популярные книги — Борн М., Атомная физика, пер. с англ., 3 изд., М., 1970; Пайерлс Р. Е., Законы природы, пер. с англ., 2 изд., М., 1962.

  В. Б. Берестецкий.

Рис. 5 к ст. Квантовая механика.

Рис. 1 к ст. Квантовая механика.

Рис. 6 к ст. Квантовая механика.

Рис. 2 к ст. Квантовая механика.

Рис. 4 к ст. Квантовая механика.

Рис. 7 к ст. Квантовая механика.

Рис. 3 к ст. Квантовая механика.

Квантовая радиофизика

Ква'нтовая радиофи'зика, то же, что и квантовая электроника.

Квантовая статистика

Ква'нтовая стати'стика, раздел статистической физики, исследующий системы множества частиц, подчиняющихся законам квантовой механики. См. Статистическая физика.

Квантовая теория поля

Ква'нтовая тео'рия по'ля.

Перейти на страницу:

Похожие книги

100 знаменитых загадок природы
100 знаменитых загадок природы

Казалось бы, наука достигла такого уровня развития, что может дать ответ на любой вопрос, и все то, что на протяжении веков мучило умы людей, сегодня кажется таким простым и понятным. И все же… Никакие ученые не смогут ответить, откуда и почему возникает феномен полтергейста, как появились странные рисунки в пустыне Наска, почему идут цветные дожди, что заставляет китов выбрасываться на берег, а миллионы леммингов мигрировать за тысячи километров… Можно строить предположения, выдвигать гипотезы, но однозначно ответить, почему это происходит, нельзя.В этой книге рассказывается о ста совершенно удивительных явлениях растительного, животного и подводного мира, о геологических и климатических загадках, о чудесах исцеления и космических катаклизмах, о необычных существах и чудовищах, призраках Северной Америки, тайнах сновидений и Бермудского треугольника, словом, о том, что вызывает изумление и не может быть объяснено с точки зрения науки.Похоже, несмотря на технический прогресс, человечество еще долго будет удивляться, ведь в мире так много непонятного.

Владимир Владимирович Сядро , Оксана Юрьевна Очкурова , Татьяна Васильевна Иовлева

Приключения / Публицистика / Природа и животные / Энциклопедии / Словари и Энциклопедии
100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
100 великих загадок современности
100 великих загадок современности

Новая книга из серии «100 великих» посвящена ряду загадок отечественной и всемирной истории XX и начала XXI века. Порой кажется, что столетие, лишь недавно канувшее в Лету, дает нам поводов для размышлений и материала для исследований больше, чем все прошедшие века и тысячелетия человеческой истории. Две мировые войны, множество локальных военных конфликтов, революции и гражданские войны, заговоры, путчи и перевороты, экономические «чудеса» и тяжелейшие кризисы, выдающиеся достижения культуры и великие научные открытия, взлеты и падения человеческого духа – все это уместилось на относительно небольшом хронологическом отрезке. Читателю предлагаются оригинальные версии, результаты исследований ученых, краеведов, журналистов.

Николай Николаевич Непомнящий

Энциклопедии / Прочая научная литература / Образование и наука