Читаем Большая Советская Энциклопедия (КВ) полностью

  В К. т. п. процесс «облачения» математической частицы, т. е, её превращение в физическую, выглядит сложнее, чем в классической электродинамике, где всё сводится к «пристёгиванию» к частице кулоновского «шлейфа». В квантовой теории физическая частица отличается от математической «шубой», гораздо более сложной по своему строению: её образуют «облака» рождаемых и вслед затем поглощаемых частицей виртуальных квантов. Это могут быть кванты любого из полей, с которыми частица находится во взаимодействии (электромагнитного, электронно-позитронного, мезонного и т.д.). «Шуба» не есть нечто застывшее, — образующие её кванты непрерывно порождаются и поглощаются. «Шуба» пульсирует, т. е. несущая её частица как бы проводит часть времени в «облачённом», а часть — в «голом» состоянии. Какую именно часть — это определяется степенью интенсивности взаимодействий. Например, мезонные взаимодействия нуклонов более чем в сто раз интенсивнее электромагнитных; это позволяет предполагать, что мезонное «одеяние» протона более чем в сто раз «плотнее» электромагнитного. Это, может быть, позволяет понять, почему квантовая теория электромагнитных процессов даже при далеко не полном учёте вакуумных эффектов блестяще согласуется с экспериментом, тогда как мезонная теория не добилась таких успехов. В квантовой электродинамике можно ограничиться рассмотрением процессов с малым числом виртуальных фотонов и виртуальных электроннопозитронных пар, что соответствует учёту небольшого числа «низших» поправок по методу теории возмущений; в мезонной теории это не приводит к успеху, что и создаёт трудности, которые будут рассмотрены в разделе IV.

  Все приведённые выше рассуждения о «шубе» частиц являются, строго говоря, полуинтуитивными и не могут быть пока переведены на язык точной теории. Однако они могут быть полезными хотя бы потому, что помогают уяснить отличие математической частицы от физической и понять, что описание последней является далеко не простой задачей.

  2. Поляризация вакуума. Перенормировка заряда. Электрическое (и в первую очередь кулоновское) поле заряженной частицы оказывает влияние на распределение виртуальных электронно-позитронных пар (и пар любых других заряженных частиц-античастиц). Реальный электрон притягивает виртуальные позитроны и отталкивает виртуальные электроны. Это должно приводить к явлениям, напоминающим поляризацию среды, в которую вносится заряженная частица. Для описания таких явлений опять применим метод возмущений.

  Поляризация электронно-позитронного вакуума (принято использовать подсказываемый приведённой аналогией термин) является чисто квантовым эффектом, вытекающим из К. т. п. Эта поляризация приводит к тому, что электрон оказывается окруженным плотным слоем позитронов из виртуальных пар, так что эффективный заряд электрона должен существенно изменяться. Возникает экранировка заряда, т. е. его эффективное уменьшение. Если рассматривать «затравочные» частицы как точечные, то экранировка оказывается полной, т. е. эффективный заряд нулевым (проблема «заряда нуль»). Для преодоления этой трудности используется идея перенормировки заряда. Здесь почти дословно повторяются приводившиеся при обсуждении перенормировки массы аргументы. Назовём «затравочным» заряд, который был бы у частицы, если бы исчезло взаимодействие с электронно-позитронным вакуумом (будем говорить только о нём, хотя, конечно, нужно учитывать и влияние виртуальных пар др. полей). Наличие такого взаимодействия приводит к появлению «поправки» к заряду. Корректно вычислять её физики не умеют, как не умеют и определять «затравочный» заряд. Но поскольку эти две части заряда ни в эксперименте, ни в теории не выступают порознь, можно обойти трудность, подставляя на место общего заряда величину, непосредственно взятую из опыта. Эта процедура называется перенормировкой заряда. Перенормировки заряда и массы не решают проблем, возникающих в теории точечных частиц, они лишь изолируют эти проблемы на некотором этапе теории и (что весьма важно) дают возможность выделить конечные наблюдаемые части из бесконечных значений для некоторых величин, характеризующих физические частицы.

  3. Некоторые наблюдаемые «вакуумные» эффекты. Существует возможность экспериментально наблюдать влияние«вакуума» на частицы. Оказывается, что «шуба» физических частиц зависит оттого, какие внешние поля действуют на эту частицу. Иначе говоря, полевые добавки к энергии частицы зависят от её состояния. Общая полевая энергия, как уже говорилось, получается в теории точечных частиц бесконечно большой, но из этой бесконечно большой величины можно выделить конечную часть, которая меняется в зависимости от состояния частицы и поэтому может быть обнаружена на опыте.

Перейти на страницу:

Похожие книги

100 знаменитых загадок природы
100 знаменитых загадок природы

Казалось бы, наука достигла такого уровня развития, что может дать ответ на любой вопрос, и все то, что на протяжении веков мучило умы людей, сегодня кажется таким простым и понятным. И все же… Никакие ученые не смогут ответить, откуда и почему возникает феномен полтергейста, как появились странные рисунки в пустыне Наска, почему идут цветные дожди, что заставляет китов выбрасываться на берег, а миллионы леммингов мигрировать за тысячи километров… Можно строить предположения, выдвигать гипотезы, но однозначно ответить, почему это происходит, нельзя.В этой книге рассказывается о ста совершенно удивительных явлениях растительного, животного и подводного мира, о геологических и климатических загадках, о чудесах исцеления и космических катаклизмах, о необычных существах и чудовищах, призраках Северной Америки, тайнах сновидений и Бермудского треугольника, словом, о том, что вызывает изумление и не может быть объяснено с точки зрения науки.Похоже, несмотря на технический прогресс, человечество еще долго будет удивляться, ведь в мире так много непонятного.

Владимир Владимирович Сядро , Оксана Юрьевна Очкурова , Татьяна Васильевна Иовлева

Приключения / Публицистика / Природа и животные / Энциклопедии / Словари и Энциклопедии
100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
100 великих загадок современности
100 великих загадок современности

Новая книга из серии «100 великих» посвящена ряду загадок отечественной и всемирной истории XX и начала XXI века. Порой кажется, что столетие, лишь недавно канувшее в Лету, дает нам поводов для размышлений и материала для исследований больше, чем все прошедшие века и тысячелетия человеческой истории. Две мировые войны, множество локальных военных конфликтов, революции и гражданские войны, заговоры, путчи и перевороты, экономические «чудеса» и тяжелейшие кризисы, выдающиеся достижения культуры и великие научные открытия, взлеты и падения человеческого духа – все это уместилось на относительно небольшом хронологическом отрезке. Читателю предлагаются оригинальные версии, результаты исследований ученых, краеведов, журналистов.

Николай Николаевич Непомнящий

Энциклопедии / Прочая научная литература / Образование и наука