Читаем Большая Советская Энциклопедия (КВ) полностью

  Лэмбовский сдвиг уровня. В атоме водорода (и некоторых др. лёгких атомах) имеются два состояния — 2S1/2 и 2P1/2, энергии которых, согласно квантовой механике, должны совпадать. В то же время картина движения электронов в этих состояниях различна. Образно говоря, S-электрон (электрон в S-состоянии) проводит основную часть своего времени вблизи ядра, а Р-электрон в среднем находится на большем удалении от ядра. Поэтому S-электрон в среднем находится в более сильном поле, чем Р-электрон. Это приводит к тому, что добавки к энергии за счёт взаимодействия с фотонным вакуумом у Р-электрона и у S-электрона оказываются разными, что можно пояснить наглядно. Как уже говорилось, взаимодействие с вакуумом как бы раскачивает, трясёт электрон. Вместо того чтобы двигаться по некоторой устойчивой, например круговой, орбите радиуса r (примем опять этот классический образ), электрон начинает хаотически отклоняться то в одну, то в другую сторону от этой орбиты. При отклонении в каждую сторону на Dг энергия меняется по-разному. Действительно, кулоновская энергия электрона в поле ядра меняется по закону: Епотенц. ~ 1/r; при увеличении r на Dг энергия изменяется на величину , а при уменьшении r на Dr, на величину , т. е. абсолютное значение больше, чем DE. Это приводит к тому, что «вакуумное дрожание» электрона меняет значение его потенциальной энергии. Особенно заметно это изменение там, где сама потенциальная энергия велика и быстро меняется с изменением r, т. е. вблизи ядра. Т. о., для S-электронов вакуумные добавки к энергии (они называются радиационными поправками) должны быть больше, чем для Р-электронов, что и «раздвигает» уровни их энергии, которые без этого совпадали бы. Величина расщепления, называемая лэмбовским сдвигом уровней (впервые он был теоретически объяснён Х. Бете и обнаружен экспериментально в 1947 американскими физиками У. Лэмбом и Р. Резерфордом), согласно К. т. п., оказывается равной (если выражать её в единицах частоты n): для водорода 1057,77 Мгц, для дейтерия 1058,9 Мгц, для гелия 14046,3 Мгц (переход к энергетическим единицам — эргам — производится по формуле E = hn, где n выражено в гц). Эти значения находятся в таком хорошем соответствии с данными эксперимента, что дальнейшее увеличение экспериментальной точности приведёт уже к обнаружению эффектов, обусловленных не электромагнитными взаимодействиями, а так называемыми сильными взаимодействиями.

  Аномальный магнитный момент. Не менее замечательна точность, с которой вычисляется аномальный магнитный момент электрона, также отражающий «вакуумные» (радиационные) влияния на эту частицу. Из квантовой теории электрона П. Дирака следует, что электрон должен обладать магнитным моментом

.     (12)

  Но это относится к «голому» электрону. Процесс его «облачения» меняет магнитный момент. Включив в рассмотрение взаимодействие электрона с вакуумом, нужно прежде всего заменить заряд (е0) и массу (m0) идеализированной математической частицы на физические значения этих величин:

m0 ® m физич., е0 ® ефизич..

  Однако этим не исчерпывается учёт наблюдаемых эффектов. Магнитный момент — величина, обусловливающая взаимодействие покоящейся частицы с внешним магнитным полем. Поправки появляющиеся в выражении для энергии такого взаимодействия, естественно интерпретировать как результат появления «вакуумных» добавок к магнитному моменту (эти добавки, впервые теоретически исследованные Ю. Швингером, и называется аномальным магнитным моментом). Аномальный магнитный момент электрона вычислен и измерен с высокой точностью, о чем можно судить по следующим данным:

mтеоретич. = mнормальн. + mанормальн. = m0 + m0 = 1,0011596m0,     (13)

где aтак называемая постоянная тонкой структуры, равная

 точнее ;     (14)

mэксперим. = (1,0011609±0,0000024) m0.     (15).

Здесь опять наблюдается поразительное совпадение измеренного магнитного момента электрона и его значения, полученного на основе К. т. п.

  Рассеяние света на свете. Существуют и др. описываемые К. т. п. эффекты. Ограничимся рассмотрением ещё одного эффекта, который предсказывается К. т. п. Известно, что для электромагнитных волн справедлив принцип суперпозиции: электромагнитные волны, накладываясь, не оказывают друг на друга никакого влияния. Этот принцип наложения волн без взаимных искажений переходит из классической теории в квантовую, где он принимает форму утверждения об отсутствии взаимодействия между фотонами. Однако положение меняется, если учесть эффекты, обусловленные электронно-позитронным вакуумом.

Перейти на страницу:

Похожие книги

100 знаменитых загадок природы
100 знаменитых загадок природы

Казалось бы, наука достигла такого уровня развития, что может дать ответ на любой вопрос, и все то, что на протяжении веков мучило умы людей, сегодня кажется таким простым и понятным. И все же… Никакие ученые не смогут ответить, откуда и почему возникает феномен полтергейста, как появились странные рисунки в пустыне Наска, почему идут цветные дожди, что заставляет китов выбрасываться на берег, а миллионы леммингов мигрировать за тысячи километров… Можно строить предположения, выдвигать гипотезы, но однозначно ответить, почему это происходит, нельзя.В этой книге рассказывается о ста совершенно удивительных явлениях растительного, животного и подводного мира, о геологических и климатических загадках, о чудесах исцеления и космических катаклизмах, о необычных существах и чудовищах, призраках Северной Америки, тайнах сновидений и Бермудского треугольника, словом, о том, что вызывает изумление и не может быть объяснено с точки зрения науки.Похоже, несмотря на технический прогресс, человечество еще долго будет удивляться, ведь в мире так много непонятного.

Владимир Владимирович Сядро , Оксана Юрьевна Очкурова , Татьяна Васильевна Иовлева

Приключения / Публицистика / Природа и животные / Энциклопедии / Словари и Энциклопедии
100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
100 великих загадок современности
100 великих загадок современности

Новая книга из серии «100 великих» посвящена ряду загадок отечественной и всемирной истории XX и начала XXI века. Порой кажется, что столетие, лишь недавно канувшее в Лету, дает нам поводов для размышлений и материала для исследований больше, чем все прошедшие века и тысячелетия человеческой истории. Две мировые войны, множество локальных военных конфликтов, революции и гражданские войны, заговоры, путчи и перевороты, экономические «чудеса» и тяжелейшие кризисы, выдающиеся достижения культуры и великие научные открытия, взлеты и падения человеческого духа – все это уместилось на относительно небольшом хронологическом отрезке. Читателю предлагаются оригинальные версии, результаты исследований ученых, краеведов, журналистов.

Николай Николаевич Непомнящий

Энциклопедии / Прочая научная литература / Образование и наука