Читаем Большая Советская Энциклопедия (КВ) полностью

  Для вынужденных К. п. число переходов пропорционально плотности rn излучения частоты n = (Ek - Ei)/h, т. е. энергии фотонов частоты n, находящихся в 1 см3. Вероятности поглощения и вынужденного испускания характеризуются соответственно коэффициентами Эйнштейна Bik и Bki, равными числам фотонов, поглощаемых и соответственно вынужденно испускаемых в среднем одной частицей за 1 сек при плотности излучения, равной единице. Произведения Bikrn и Bkirn определяют вероятности вынужденного поглощения и испускания под действием внешнего электромагнитного излучения плотности rn и, так же как Aki, выражаются в сек–1.

  Коэффициенты Aki, Bik и Bki связаны между собой соотношениями (впервые полученными А. Эйнштейном и строго обоснованными в квантовой электродинамике):

gkBki = giBik,              (3)

,     (4)

где gi (gk) кратность вырождения уровня Ei (Ek), т. е. число различных состояний системы, имеющих одну и ту же энергию Ei (соответственно Ek), с — скорость света. Для переходов между невырожденными уровнями (gi = gk = 1) Bki = Bik, т. е. вероятности вынужденных К. п. — прямого и обратного — одинаковы. Если один из коэффициентов Эйнштейна известен, то по соотношениям (3) и (4) можно определить остальные.

  Вероятности излучательных переходов различны для разных К. п. и зависят от свойств уровней энергии Ei и Ek, между которыми происходит переход. Вероятности К. п. тем больше, чем сильнее изменяются при переходе электрические и магнитные свойства квантовой системы, характеризуемые её электрическими и магнитными моментами. Возможность излучательных К. п. между уровнями Ei и Ek с заданными характеристиками определяется отбора правилами. (Подробнее см. Излучение электромагнитное.)

  Безызлучательные квантовые переходы также характеризуются вероятностями соответствующих переходов Cki и Cik,средними числами процессов отдачи и получения энергии Ek — Ei в 1 сек, рассчитанными на одну частицу с энергией Ek (для процесса отдачи энергии) или энергией Ei (для процесса получения энергии). Если возможны как излучательные, так и безызлучательные К. п., то полная вероятность перехода равна сумме вероятностей переходов обоих типов. Учёт безызлучательных К. п. играет существенную роль, когда его вероятность того же порядка или больше соответствующего К. п. с излучением. Например, если с первого возбуждённого уровня E2 возможен спонтанный излучательный переход на основной уровень E1 с вероятностью A21 и безызлучательный переход на тот же уровень с вероятностью C21, то полная вероятность перехода равна A21 + C21, а время жизни на уровне равно t'2 = 1/(A21 + C21) вместо t2 = 1/ A2 при отсутствии безызлучательного перехода. Т. о., за счёт безызлучательных К. п. время жизни на уровне уменьшается. При A21 >> C21 время t'2 очень мало по сравнению с t'2, и подавляющее большинство частиц будет терять энергию возбуждения E2 - E1 при безызлучательных процессах — будет происходить тушение спонтанного испускания.

  Лит. см. при ст. Атом,Молекула,Спектры оптические.

  М. А. Ельяшевич.

Часть уровней квантовой системы: Е1 — основной уровень (уровень с наименьшей возможной энергией), Е2, Е3, Е4 — возбуждённые уровни. Стрелками показаны квантовые переходы с поглощением (направление вверх) и с отдачей энергии (направление вниз).

Квантовые стандарты частоты

Ква'нтовые станда'рты частоты', устройства, в которых для точного измерения частоты колебаний или для генерирования колебаний с весьма стабильной частотой используются квантовые переходы частиц (атомов, молекул, ионов) из одного энергетическое состояния в другое. К. с. ч. позволяют измерять частоту колебаний, а следовательно, и их период, т. е. время, с наибольшей точностью по сравнению с др. стандартами частоты (см. Частоты стандарт,Время). Это привело к их внедрению в метрологию. К. с. ч. служат основой национальных эталонов частоты и времени и вторичных эталонов частоты, которые по классу точности и метрологическим возможностям приближаются к национальному эталону, но подлежат калибровке по нему. К. с. ч. применяются как лабораторные стандарты частоты, имеющие широкий набор выходных частот и снабженные устройством для сравнения измеряемой частоты с частотой стандарта, а также как реперы частоты, которые позволяют наблюдать выбранную спектральную линию, не внося в неё существенных искажений, и сравнивать (с высокой точностью) измеряемую частоту с частотой, фиксируемой спектральной линией. Качество К. с. ч. характеризуется их стабильностью — способностью сохранять выбранное значение частоты неизменным в течение длительного промежутка времени.

Перейти на страницу:

Похожие книги

100 знаменитых загадок природы
100 знаменитых загадок природы

Казалось бы, наука достигла такого уровня развития, что может дать ответ на любой вопрос, и все то, что на протяжении веков мучило умы людей, сегодня кажется таким простым и понятным. И все же… Никакие ученые не смогут ответить, откуда и почему возникает феномен полтергейста, как появились странные рисунки в пустыне Наска, почему идут цветные дожди, что заставляет китов выбрасываться на берег, а миллионы леммингов мигрировать за тысячи километров… Можно строить предположения, выдвигать гипотезы, но однозначно ответить, почему это происходит, нельзя.В этой книге рассказывается о ста совершенно удивительных явлениях растительного, животного и подводного мира, о геологических и климатических загадках, о чудесах исцеления и космических катаклизмах, о необычных существах и чудовищах, призраках Северной Америки, тайнах сновидений и Бермудского треугольника, словом, о том, что вызывает изумление и не может быть объяснено с точки зрения науки.Похоже, несмотря на технический прогресс, человечество еще долго будет удивляться, ведь в мире так много непонятного.

Владимир Владимирович Сядро , Оксана Юрьевна Очкурова , Татьяна Васильевна Иовлева

Приключения / Публицистика / Природа и животные / Энциклопедии / Словари и Энциклопедии
100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
100 великих загадок современности
100 великих загадок современности

Новая книга из серии «100 великих» посвящена ряду загадок отечественной и всемирной истории XX и начала XXI века. Порой кажется, что столетие, лишь недавно канувшее в Лету, дает нам поводов для размышлений и материала для исследований больше, чем все прошедшие века и тысячелетия человеческой истории. Две мировые войны, множество локальных военных конфликтов, революции и гражданские войны, заговоры, путчи и перевороты, экономические «чудеса» и тяжелейшие кризисы, выдающиеся достижения культуры и великие научные открытия, взлеты и падения человеческого духа – все это уместилось на относительно небольшом хронологическом отрезке. Читателю предлагаются оригинальные версии, результаты исследований ученых, краеведов, журналистов.

Николай Николаевич Непомнящий

Энциклопедии / Прочая научная литература / Образование и наука