Читаем Большая Советская Энциклопедия (КВ) полностью

  Наиболее важным активным К. с. ч. является водородный квантовый генератор (рис. 4). В водородном генераторе пучок атомов водорода выходит из источника 1, где при низком давлении под влиянием электрического разряда молекулы водорода расщепляются на атомы. Размеры каналов, сквозь которые атомы вылетают из источника 1 в вакуумную камеру, меньше, чем расстояние, пролетаемое атомами водорода между их столкновениями. При этом условии атомы водорода вылетают из источника в виде узкого пучка. Этот пучок проходит между полюсными наконечниками многополюсного магнита 2. Действие поля, создаваемого таким магнитом, таково, что оно фокусирует вблизи оси пучка атомы, находящиеся в возбуждённом состоянии, и разбрасывает в стороны атомы, которые находятся в основном (невозбуждённом) состоянии.

  Возбуждённые атомы пролетают через маленькое отверстие в кварцевую колбу 4, находящуюся внутри объёмного резонатора 3, настроенного на частоту, соответствующую переходу атомов водорода из возбуждённого состояния в основное. Под действием электромагнитного поля атомы водорода излучают, переходя в основное состояние. Фотоны, излучаемые атомами водорода в течение сравнительно большого времени, определяемого добротностью резонатора, остаются внутри него, вызывая снова вынужденное испускание таких же фотонов атомами водорода, влетающими позже. Т. о., резонатор создаёт обратную связь, необходимую для самовозбуждения генератора (см. Генерирование электрических колебаний). Однако достижимая интенсивность пучков атомов водорода всё же недостаточна для того, чтобы обеспечить самовозбуждение такого генератора, если используется обычный объёмный резонатор. Поэтому в резонатор помещают кварцевую колбу 4, стенки которой покрыты изнутри тонким слоем фторопласта (тефлона). Возбуждённые атомы водорода могут удариться о плёнку тефлона более десяти тысяч раз, не потеряв при этом свою избыточную энергию. Благодаря этому в колбе скапливается значительное число возбуждённых атомов водорода и среднее время пребывания каждого из них в резонаторе увеличивается примерно до 1 сек. Этого достаточно для того, чтобы условия самовозбуждения были выполнены и водородный генератор начал работать, излучая электромагнитные волны с чрезвычайно стабильной частотой.

  Колба, размеры которой выбираются меньшими, чем генерируемая длина волны, играет ещё одну, чрезвычайно важную роль. Хаотичное движение атомов водорода внутри колбы должно было бы привести к уширению спектральной линии вследствие эффекта Доплера, (см. Доплера эффект). Однако если движение атомов ограничено объёмом, размеры которого меньше длины волны, то спектральная линия приобретает вид узкого пика, возвышающегося над широким низким пьедесталом. В результате этого в водородном генераторе, генерирующем излучение с длиной волны l = 21 см, ширина спектральной линии составляет всего 1 гц.

  Именно чрезвычайно малая ширина спектральной линии обеспечивает малую погрешность частоты водородного генератора, также лежащую в пределах 13-го знака. Погрешность обусловлена взаимодействием атомов водорода с фторпла-стовым покрытием колбы. Значение этой частоты, измеренное при помощи К. с. ч. на пучке атомов Cs (см. выше), равно 1.420.405.751,7860 ± 0,0046 гц. Мощность водородного генератора чрезвычайно мала (~ 10–12 вт). Поэтому К. с. ч. на основе водородного генератора включает в себя, помимо схем сравнения и формирования сетки стандартных частот, чрезвычайно чувствительный приёмник.

  Оба описанных К. с. ч. работают в диапазоне сверхвысоких радиочастот (СВЧ). Известен ряд др. атомов и молекул, спектральные линии которых позволяют создавать активные и пассивные К. с. ч. радиодиапазона. Однако они пока не нашли практического применения. Лишь К. с. ч. на атомах рубидия, основанные на методе оптической накачки, широко применяются в качестве вторичного стандарта частоты в лабораторной практике, а также в системах радионавигации и в квантовых часах.

  К. с. ч. оптического диапазона представляют собой лазеры, в которых приняты специальные меры для стабилизации частоты их излучения. В оптическом диапазоне доплеровское уширение спектральных линий очень велико и из-за малой длины световых волн подавить его так, как это сделано в водородном генераторе, не удаётся. Создать же эффективный лазер на пучках атомов или молекул пока также не удаётся. Т. к. в пределах доплеровской ширины спектральной линии помещается несколько относительно узких резонансных линий оптического резонатора, то частота генерации подавляющего большинства лазеров определяется не столько частотой используемой спектральной линии, сколько размерами оптического резонатора, определяющими его резонансные частоты. Но эти частоты не остаются постоянными, а изменяются под влиянием изменений температуры, давления, под действием вибраций, старения и  т.п.

Перейти на страницу:

Похожие книги

100 знаменитых загадок природы
100 знаменитых загадок природы

Казалось бы, наука достигла такого уровня развития, что может дать ответ на любой вопрос, и все то, что на протяжении веков мучило умы людей, сегодня кажется таким простым и понятным. И все же… Никакие ученые не смогут ответить, откуда и почему возникает феномен полтергейста, как появились странные рисунки в пустыне Наска, почему идут цветные дожди, что заставляет китов выбрасываться на берег, а миллионы леммингов мигрировать за тысячи километров… Можно строить предположения, выдвигать гипотезы, но однозначно ответить, почему это происходит, нельзя.В этой книге рассказывается о ста совершенно удивительных явлениях растительного, животного и подводного мира, о геологических и климатических загадках, о чудесах исцеления и космических катаклизмах, о необычных существах и чудовищах, призраках Северной Америки, тайнах сновидений и Бермудского треугольника, словом, о том, что вызывает изумление и не может быть объяснено с точки зрения науки.Похоже, несмотря на технический прогресс, человечество еще долго будет удивляться, ведь в мире так много непонятного.

Владимир Владимирович Сядро , Оксана Юрьевна Очкурова , Татьяна Васильевна Иовлева

Приключения / Публицистика / Природа и животные / Энциклопедии / Словари и Энциклопедии
100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
100 великих загадок современности
100 великих загадок современности

Новая книга из серии «100 великих» посвящена ряду загадок отечественной и всемирной истории XX и начала XXI века. Порой кажется, что столетие, лишь недавно канувшее в Лету, дает нам поводов для размышлений и материала для исследований больше, чем все прошедшие века и тысячелетия человеческой истории. Две мировые войны, множество локальных военных конфликтов, революции и гражданские войны, заговоры, путчи и перевороты, экономические «чудеса» и тяжелейшие кризисы, выдающиеся достижения культуры и великие научные открытия, взлеты и падения человеческого духа – все это уместилось на относительно небольшом хронологическом отрезке. Читателю предлагаются оригинальные версии, результаты исследований ученых, краеведов, журналистов.

Николай Николаевич Непомнящий

Энциклопедии / Прочая научная литература / Образование и наука