Читаем Большая Советская Энциклопедия (КВ) полностью

  В широком смысле К. ч. часто называют физические величины, определяющие движение квантовомеханической частицы (или системы), сохраняющиеся в процессе движения, но не обязательно принадлежащие к дискретному спектру возможных значений. Например, энергию свободно движущегося электрона (имеющую непрерывный спектр значений) можно рассматривать как одно из его К. ч.

  Лит. см. при ст. Атомная физика,Элементарные частицы.

  Д. В. Гальцов.

Квантовый генератор

Ква'нтовый генера'тор, генератор электромагнитных волн, в котором используется явление вынужденного излучения(см. Квантовая электроника). К. г. радиодиапазона сверхвысоких частот (СВЧ), так же как и квантовый усилитель этого диапазона, часто называют мазером. Первый К. г. был создан в диапазоне СВЧ в 1955 одновременно в СССР (Н. Г. Басов и А. М. Прохоров) и в США (Ч. Таунс). В качестве активной среды в нём использовался пучок молекул аммиака. Поэтому он получил название молекулярного генератора. В дальнейшем был построен К. г. СВЧ на пучке атомов водорода. Важная особенность этих К. г. — высокая стабильность частоты генерации, достигающая 10–13, в силу чего они используются как квантовые стандарты частоты.

  К. г. оптического диапазона — лазеры. (оптические квантовые генераторы, ОКГ) появились в 1960. Лазеры работают в широком диапазоне длин волн от ультрафиолетовой до субмиллиметровой областей спектра, в импульсном и непрерывном режимах. Существуют лазеры на кристаллах и стеклах, газовые, жидкостные и полупроводниковые. В отличие от др. источников света, лазеры излучают высококогерентные монохроматические световые волны, вся энергия которых концентрируется в очень узком телесном угле.

  Лит. см. при ст. Квантовая электроника.

Квантовый гироскоп

Ква'нтовый гироско'п, прибор, позволяющий обнаруживать вращение тела и определять его угловую скорость, основанный на гироскопических свойствах электронов, атомных ядер или фотонов.

  Лазерный (оптический) гироскоп. Датчиком оптического гироскопа служит кольцевой лазер, генерирующий две бегущие навстречу друг другу световые волны, которые распространяются по общему световому каналу в виде узких монохроматических световых пучков. Резонатор кольцевого лазера (рис. 1) состоит из трёх (или больше) зеркал 1, 2, 3, смонтированных на жёстком основании и образующих замкнутую систему. Часть света проходит через полупрозрачное зеркало 3 и попадает на фотодетектор 5. Длина волны, генерируемая кольцевым лазером (в пределах ширины спектральной линии рабочего вещества), определяется условием, согласно которому бегущая волна, обойдя контур резонатора, должна прийти в исходную точку с той же фазой, которую имела вначале. Если прибор неподвижен, то это имеет место, когда в периметре Р контура укладывается целое число n длин волн l0, т. е. Р = nl0. В этом случае лазер генерирует 2 встречные волны, частоты которых одинаковы и равны:

n0 = c/l0 = cn/P,

(с — скорость света).

  Если же весь прибор вращается с угловой скоростью W вокруг направления, составляющего угол J с перпендикуляром к его плоскости (рис. 2), то за время обхода волной контура последний успеет повернуться на некоторый угол. В зависимости от направления распространения волны путь, проходимый ею до совмещения фазы, будет больше или меньше Р (см. Доплера эффект). В результате этого частоты встречных волн становятся неодинаковыми. Можно показать, что эти частоты n и n+ не зависят от формы контура и связаны с частотой W вращения прибора соотношением:

.

  Здесь S — площадь, охватываемая контуром резонатора. Фотодетектор, чувствительный к интенсивности света, в этом случае зарегистрирует биенияс разностной частотой:

,

где F = W/2p, а k = . Например, для квадратного гелий-неонового К. г. (см. Газовый лазер) со стороной 25 см l0 = 6×10–5 см, откуда k = 2,5×106. При этом суточное вращение Земли, происходящее с угловой скоростью W = 15 град/ч, на широте J = 60° должно приводить к частоте биений Dn = 15 гц. Если ось К. г. направить на Солнце, то, измеряя частоту биений и считая угловую скорость W вращения Земли известной, можно с точностью до долей град определить широту J места, на которой расположен К. г.

  Интегрирование угловой скорости вращающегося тела по времени (которое может выполняться автоматически) позволяет определить угол поворота, как функцию времени. Предел чувствительности оптических К. г. теоретически определяется спонтанным излучением атомов активной среды лазера. Если частоте биений Dn = 1 гц соответствует угол поворота в 1 град/ч, то предел точности К. г. равен 10–3 град/ч. В существующих оптических К. г. этот предел ещё далеко не достигнут.

Перейти на страницу:

Похожие книги

100 знаменитых загадок природы
100 знаменитых загадок природы

Казалось бы, наука достигла такого уровня развития, что может дать ответ на любой вопрос, и все то, что на протяжении веков мучило умы людей, сегодня кажется таким простым и понятным. И все же… Никакие ученые не смогут ответить, откуда и почему возникает феномен полтергейста, как появились странные рисунки в пустыне Наска, почему идут цветные дожди, что заставляет китов выбрасываться на берег, а миллионы леммингов мигрировать за тысячи километров… Можно строить предположения, выдвигать гипотезы, но однозначно ответить, почему это происходит, нельзя.В этой книге рассказывается о ста совершенно удивительных явлениях растительного, животного и подводного мира, о геологических и климатических загадках, о чудесах исцеления и космических катаклизмах, о необычных существах и чудовищах, призраках Северной Америки, тайнах сновидений и Бермудского треугольника, словом, о том, что вызывает изумление и не может быть объяснено с точки зрения науки.Похоже, несмотря на технический прогресс, человечество еще долго будет удивляться, ведь в мире так много непонятного.

Владимир Владимирович Сядро , Оксана Юрьевна Очкурова , Татьяна Васильевна Иовлева

Приключения / Публицистика / Природа и животные / Энциклопедии / Словари и Энциклопедии
100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
100 великих загадок современности
100 великих загадок современности

Новая книга из серии «100 великих» посвящена ряду загадок отечественной и всемирной истории XX и начала XXI века. Порой кажется, что столетие, лишь недавно канувшее в Лету, дает нам поводов для размышлений и материала для исследований больше, чем все прошедшие века и тысячелетия человеческой истории. Две мировые войны, множество локальных военных конфликтов, революции и гражданские войны, заговоры, путчи и перевороты, экономические «чудеса» и тяжелейшие кризисы, выдающиеся достижения культуры и великие научные открытия, взлеты и падения человеческого духа – все это уместилось на относительно небольшом хронологическом отрезке. Читателю предлагаются оригинальные версии, результаты исследований ученых, краеведов, журналистов.

Николай Николаевич Непомнящий

Энциклопедии / Прочая научная литература / Образование и наука