Оптический магнитометр (магнитометр с оптической накачкой: рис. 2
). Датчиком прибора является стеклянная колба, наполненная парами щелочного металла (например, Rb), атомы которого парамагнитны, т.к. содержат один неспаренный электрон (см. Парамагнетик). При пропускании через колбу, помещенную в измеряемое поле Н, циркулярно поляризованного света, частота которого равна частоте оптического квантового перехода между основным состоянием атома и одним из его возбуждённых состояний, происходит резонансное рассеяние света. При этом момент количества движения квантов рассеиваемого света передаётся атомам, которые таким образом «оптически ориентируются», скапливаясь на одном из магнитных подуровней основного состояния. Если в объёме колбы датчика создать переменное магнитное поле, частота которого равна частоте квантового перехода между магнитными подуровнями основного состояния, то населённость атомов на магнитных подуровнях выравнивается, атомы теряют приобретённую преимущественную ориентацию магнитных моментов и приходят в исходное состояние. При этом пары металла, наполняющие колбу, вновь начинают сильно поглощать и рассеивать свет. Измеряя частоту переменного поля со, можно определить напряжённость магнитного поля Н, в котором находится колба датчика. Оптические К. м. особенно удобны для измерения слабых полей, < 1 э
. Чувствительность, которая может быть достигнута при помощи таких приборов, ~10–6—10–7 э, что позволяет измерять очень слабые поля, в частности в космическом пространстве. Сверхпроводящий магнитометр основан на квантовании магнитного потока
, захваченного сверхпроводящим кольцом. Величина захваченного потока кратна кванту магнитного потока Ф0= 2×10–7 э ×см2. Полный ток, протекающий через параллельные соединения двух переходов Джозефсона (сверхпроводящее кольцо, разделённое по диаметру очень тонким слоем изолятора; см. Джозефсона эффект) в результате сложения токов, проходящих по каждой из ветвей (рис. 3), изменяется пропорционально cos e/Ф, где Ф — магнитный поток, охватываемый кольцом, е — заряд электрона. Этот ток достигает максимума всякий раз, когда Ф = nФ0 (n — целое число). Наблюдая за изменениями тока, проходящего через двойной переход Джозефсона, можно измерять магнитный поток Ф и, зная площадь сечения перехода, определить напряжённость измеряемого магнитного поля. Если площадь, охватываемая двумя переходами, равна 1 мм2, то максимумы тока разделены интервалом в 2g. Таким методом можно регистрировать десятую часть этого интервала. Чувствительность метода составляет в этом случае 0,2 гаммы. Для рассмотренного примера наиболее сильное поле, которое можно измерить, составляет около 20 гамм. Все К. м. не боятся вибраций; их показания не зависят от ориентации прибора относительно измеряемого поля
Н, слабо зависят от изменения температуры, давления, влажности и т.п. Лит.:
Померанцев Н. М., Рыжков В. М., Скроцкий Г. В., Физические основы квантовой магнитометрии, М., 1972; Абрагам А., Ядерный магнетизм, пер. с англ., М., 1963. Г. В. Скроцкий.
Рис. 2. Схема оптического квантового магнитометра: Л — источник света; СФ — светофильтр; П1
— поляроид; П2 — пластинка (l/4), создающая разность фаз 90° для получения циркулярно поляризованного света; К — колба, наполненная парами щелочного металла: ф — фотоприёмник; Н — измеряемое поле.Рис. 3. Схема сверхпроводящего магнитометра: С — сверхпроводящее кольцо с двумя переходами Джозефсона (а и б); Т — согласующий трансформатор; У1
— узкополосный усилитель с детектором; У2 — усилитель постоянного тока; Р — самописец. Магнитный поток через кольцо (перпендикулярный плоскости рисунка — сверху вниз) изображен крестиками. Его изменение приводит к появлению периодической эдс на входе усилителя У1.Рис. 1. Схема протонного магнитометра: L — катушка, создающая вспомогательное намагничивающее поле H0
; П — катушка, в которой возникает эдс, обусловленная прецессией ядерных моментов вокруг измеряемого магнитного поля Н; У — усилитель сигнала; Ч — частотомер, градуированный в э.Квантовый усилитель
Ква'нтовый усили'тель,
устройство для усиления электромагнитных волн за счёт вынужденного излучения возбуждённых атомов, молекул или ионов. Эффект усиления в К. у. связан с изменением энергии внутриатомных (связанных) электронов, движение которых описывается квантовой механикой. Поэтому, в отличие, например, от ламповых усилителей, в которых используются потоки свободных электронов, движение которых хорошо описывается классической механикой, эти усилители получили название квантовых (см. Квантовая электроника).