Читаем Большая Советская Энциклопедия (ЛА) полностью

  Если величины x1, x2, ..., xn, y1, y2, ..., ym суть решения уравнений, определяющих стационарные точки функции Лагранжа, а именно, для дифференцируемых функций являются решениями системы уравнений

  , i = 1, …, n; , i = 1, …,m,

  то при достаточно общих предположениях x1, x2, ..., xn доставляют экстремум функции f. Функция Лагранжа L применяется также при исследовании задач вариационного исчисления и математического программирования. Впервые Л. м. м. был предложен в 1797 Ж. Лагранжем в связи с задачами дифференциального исчисления.

  Лит.: Кудрявцев Л. Д., Математический анализ, т. 2, М., 1970.

Лагранжа уравнения

Лагра'нжа уравне'ния,

  1) в гидромеханике — уравнения движения жид кой среды, записанные в переменных Лагранжа, которыми являются координаты частиц среды. Из Л. у. определяется закон движения частиц среды в виде зависимостей координат от времени, а по ним находятся траектории, скорости и ускорения частиц. Обычно этот путь исследования оказывается достаточно сложным, и при решении большинства гидромеханических задач идут другим путём, используя Эйлера уравнения гидромеханики. Л. у. применяют главным образом при изучении колебательных движений жидкости.

  Л. у. являются уравнениями в частных производных и имеют вид:

(i = 1, 2, 3),

  где t — время, х, у, z — координаты частицы, a1, a2, a3 — параметры, которыми отличаются частицы друг от друга (например, начальные координаты частиц), X, Y, Z — проекции объёмных сил, р — давление, r — плотность.

  Решение конкретных задач сводится к тому, чтобы, зная X, Y, Z, а также начальные и граничные условия, найти х, у, z, р, r  как функции t и а1, a2, a3. При этом надо использовать ещё неразрывности уравнение (тоже в переменных Лагранжа) и уравнение состояния в виде r = f(Р) (для несжимаемой жидкости r — const).

  2) В общей механике — уравнения, применяемые для изучения движения механической системы, в которых за величины, определяющие положение системы, выбирают независимые между собой параметры, называют обобщёнными координатами. Впервые получены Ж. Лагранжем в 1760.

  Движение механической системы можно изучать, используя или непосредственно уравнения, которые даёт 2-й закон динамики, или получаемые как следствия из законов динамики общие теоремы (см. Динамика). Первый путь приводит к необходимости решать большое число уравнений, зависящее от числа точек и тел, входящих в систему; кроме того, эти уравнения содержат дополнительные неизвестные в виде реакций наложенных связей (см. Связи механические). Всё это приводит к большим математическим трудностям. Второй путь требует применения каждый раз разных теорем и для сложных систем приводит в итоге к тем же трудностям.

  Л. у. дают для широкого класса механических систем единый и достаточно простой метод составления уравнений движения, не зависящий от вида (сложности) конкретной системы. Большое преимущество Л. у. состоит в том, что число их равно числу степеней свободы системы и не зависит от количества входящих в систему точек и тел. Например, машины и механизмы состоят из многих тел (деталей), а имеют обычно 1—2 степени свободы; следовательно, изучение их движения потребует составления лишь 1—2 Л. у. Кроме того, при идеальных связях из Л. у. автоматически исключаются все неизвестные реакции связей. По этим причинам Л. у. широко используются при решении многих задач механики, в частности в динамике машин и механизмов, в теории колебаний, теории гироскопа и др. Кроме этого, в случае, когда на систему действуют только потенциальные силы, Л. у. приводятся к виду, позволяющему использовать их (при соответствующем обобщении понятий) не только в механике, но и в др. областях физики.

  Для голономных систем Л. у. в общем случае имеют вид:

(i = 1,2, ..., n),

  где qi — обобщённые координаты, число которых равно числу n степеней свободы системы,  — обобщённые скорости, Qi — обобщённые силы, Т — кинетическая энергия системы, выраженная через qi и .

  Для составления уравнений (1) надо найти выражение Т и вычислить по заданным силам Qi. После подстановки Т в левые части уравнения (1) будут содержать координаты qi и их первые и вторые производные по времени, т. е. будут дифференциальными уравнениями 2-го порядка относительно qi. Интегрируя эти уравнения и определяя постоянные интегрирования по начальным условиям, находят зависимости qi(t), т. е. закон движения системы в обобщённых координатах.

  Когда на систему действуют только потенциальные силы, Л. у. принимают вид:

(i = 1,2, ..., n),

  где L = Т — П — т. н. функция Лагранжа, а П — потенциальная энергия системы. Эти уравнения используются и в др. областях физики.

Перейти на страницу:

Похожие книги

100 знаменитых символов советской эпохи
100 знаменитых символов советской эпохи

Советская эпоха — яркий и очень противоречивый период в жизни огромной страны. У каждого из нас наверняка своё ощущение той эпохи. Для кого-то это годы спокойствия и глубокой уверенности в завтрашнем дне, это время, когда большую страну уважали во всём мире. Для других, быть может, это период страха, «железного занавеса», время, бесцельно потраченное на стояние в бесконечных очередях.И всё-таки было то, что объединяло всех. Разве кто-нибудь мог остаться равнодушным, когда из каждой радиоточки звучали сигналы первого спутника или когда Юрий Левитан сообщал о полёте Юрия Гагарина? Разве не наворачивались на глаза слёзы, когда олимпийский Мишка улетал в московское небо? И разве не переполнялась душа гордостью за страну, когда наши хоккеисты побеждали родоначальников хоккея канадцев на их же площадках или когда фигуристы под звуки советского гимна стояли на верхней ступени пьедестала почёта?Эта книга рассказывает о тех знаменательных событиях, выдающихся личностях и любопытных деталях, которые стали символами целой эпохи, ушедшей в прошлое…

Андрей Юрьевич Хорошевский

История / Энциклопедии / Образование и наука / Словари и Энциклопедии
100 великих некрополей
100 великих некрополей

Человеческая жизнь коротка, и даже великие мудрецы не всегда могли понять, что же скрывается за вратами вечности: тайна Божественного замысла, райские кущи или адские муки? Простым смертным и вовсе не под силу было разгадать эту загадку. Однако во все времена одним из мерил духовности и нравственности народов служило их отношение к умершим. Некрополи — мемориальные сооружения прошлых эпох — занимают одно из важнейших мест среди памятников материальной культуры. Некоторые из них — это не только выдающиеся произведения архитектуры и искусства, но и важные для исследователей исторические источники.Новая книга из серии «100 великих» содержит сведения о наиболее выдающихся некрополях всех времен и народов от египетских пирамид и зороастрийских «башен молчания» до Александро-Невской лавры, Сент-Женевьев-дю-Буа и мавзолея Мао Цзэдуна.

Надежда Алексеевна Ионина , Надежда Ионина

Энциклопедии / Словари и Энциклопедии