Гиперболическая спираль (см. рис. «Трансцендентные кривые», № 6
), кривая, описываемая точкой М, движущейся по вращающейся прямой OA, так, что её расстояние от центра вращения меняется обратно пропорционально углу поворота. Уравнение в полярных координатах: r = а/j. Жезл (см. рис. «Трансцендентные кривые», № 7
), кривая, уравнение которой в полярных координатах: . Каждому значению j соответствуют два значения r — положительное и отрицательное. Кривая состоит из двух ветвей, каждая из которых асимптотически приближается к полюсу. Логарифмическая спираль (см. рис. «Трансцендентные кривые», № 8
), кривая, уравнение которой в полярных координатах: r = аекj. Была известна многим математикам 17 в. Спираль Корню (см. рис. «Трансцендентные кривые», № 9
), клотоида, кривая, состоящая из двух ветвей, симметричных относительно начала координат. уравнение в параметрической форме: , y = a.
Использовалась французским физиком М. А. Корню (1874) для графич. решения некоторых задач дифракции света.
Si-ci-спираль (см. рис. «Трансцендентные кривые», № 10
), кривая, параметрическое уравнение которой имеет вид ,
,
si
(t) и ci(t) — интегральный синус и интегральный косинус.
К циклоиде по способу построения примыкает класс циклоидальных кривых, которые могут быть как алгебраическими, так и трансцендентными. Среди них: Гипоциклоида (см. рис. «Циклоидальные кривые», № 1а, 1б
), кривая, описываемая точкой окружности, катящейся без скольжения по другой окружности внутри её. Уравнение в параметрической форме: ,
,
где А — радиус неподвижной, а а
— подвижной окружности. Вид кривой зависит от отношения А/а. Эпициклоида (см. рис. «Циклоидальные кривые», № 2а, 2б
), кривая, описываемая точкой окружности, катящейся без скольжения по другой окружности вне её. Уравнение получится из уравнения гипоциклоиды заменой а на — а. Удлинённая гипоциклоида (эпициклоида), кривая, описываемая точкой, лежащей вне окружности, которая катится без скольжения по другой окружности внутри (вне) её (см. рис. «Циклоидальные кривые», № 3а, 4д
). Аналогично определяется укороченная гипоциклоида (эпициклоида) (см. рис. «Циклоидальные кривые», № 3б, 4б). Удлинённые и укороченные гипоциклоиды и эпициклоиды иногда называются гипо- и эпитрохоидами. В. И. Битюцков, Ю. А. Горьков, А. Б. Иванов.
Лит.:
Маркушевич А. И., Замечательные кривые, 2 изд., М. — Л., 1952; Савелов А. А., Плоские кривые. Систематика, свойства, применения (Справочное руководство), М., 1960; Пархоменко А. С., Что такое линия, М., 1954; Погорелов А. В., Дифференциальная геометрия, 5 изд., М., 1969; Уокер А., Алгебраические кривые, пер. с англ., М., 1952; Loria G., Spezielle algebraische und transzendente ebene Kurven. Theorie und Geschichte, 2 Aufl., Bd 1—2, Lpz. — B., 1910—11.Алгебраические кривые третьего порядка: 1 — декартов лист; 2 — локон Аньези; 3 — кубическая парабола; 4 — полукубическая парабола; 5 — строфоида; 6 — циссоида Диоклеса.
Алгебраические кривые четвёртого и более высоких порядков: 1 — кардиоида; 2 — конхоида Никомеда; 3 — лемниската Бернулли: 4 — овалы Декарта; 5 — овалы Кассини; 6 — улитка Паскаля; 7 — астроида; 8 — розы; 9 — синус-спираль.
Циклоидальные кривые: 1 а, б — гипоциклоиды; 2 а, б — эпициклоиды; 3 а — удлинённая гипоциклоида; 3 б — укороченная гипоциклоида; 4а — удлинённая эпициклоида; 4б — укороченная эпициклоида.
Трансцендентные кривые: 1 — квадратриса; 2 — трактриса; 3 — цепная линия; 4 — циклоида; 5 — архимедова спираль; 6 — гиперболическая спираль; 7 — жезл; 8 — логарифмическая спираль; 9 — спираль Корню; 10 — si-ci-cпираль.
Линия задержки