Формула
Формула называется интуиционистски общезначимой тогда и только тогда, когда можно утверждать всякое высказывание, получаемое из в результате подстановки любых математических суждений вместо логических переменных; точнее говоря, в том случае, когда имеется общий метод, позволяющий при произвольной такой подстановке получать построение, требуемое результатом подстановки. При этом понятие общего метода интуиционисты также считают первоначальным.
Формулы 1—10 являются интуиционистски общезначимыми, тогда как формула 11, выражающая классический закон исключенного третьего, не является таковой.
В известном отношении близкой к интуиционизму является точка зрения
С методом формализации доказательств связано понятие формальной системы. Формальная система включает следующие элементы.
1. Формализованный язык с точным синтаксисом, состоящий из точных и формальных правил построения осмысленных выражений, называется формулами данного языка.
2. Чёткую семантику этого языка, состоящую из соглашений, определяющих понимание формул и тем самым условия их истинности.
3. Исчисление (см. выше), состоящее из формализованных аксиом и формальных правил вывода. При наличии семантики эти правила должны быть согласованы с ней, т. е. при применении к верным формулам давать верные формулы.
Исчисление определяет выводы (см. выше) и выводимые формулы — заключительные формулы выводов. Для выводов имеется распознающий алгоритм — единый общий метод, с помощью которого для любой цепочки знаков, применяемых в исчислении, можно узнавать, является ли она выводом. Для выводимых формул распознающий алгоритм может быть и невозможен (примером является исчисление предикатов, см.
В 70-е гг. 20 в. получила развитие идея полуформальной системы. Полуформальная система — это также система некоторых правил вывода. Однако некоторые из этих правил могут иметь существенно иной характер, чем правила вывода формальной системы. Они, например, могут допускать выведение новой формулы после того, как с помощью интуиции создалось убеждение в выводимости любой формулы такого-то вида. Сочетание этой идеи с идеей ступенчатого построения математической Л. лежит в основе одного из современных построений логики конструктивной математики. В приложениях математической Л. часто применяются исчисления предикатов — классическое и интуиционистское.