; i
= 1, …, m
; j
= 1, …, n
.Число называется значением игры; стратегии i0
, j0
называются оптимальным и чистыми стратегиями игроков I и II соответственно. Если u1
¹ u2
, то всегда u1
< u2
; в этом случае в игре седловой точки нет, а оптимальные стратегии игроков следует искать среди их смешанных стратегий (то есть вероятностных распределений на множестве чистых стратегий). В этом случае игроки оперируют уже с математическими ожиданиями выигрышей. Основная теорема теории М. и. (теорема Неймана о минимаксе) утверждает, что в любой М. и. существуют оптимальные смешанные стратегии х*
, у*
, на которых достигаемые «минимаксы» равны (общее их значение есть значение игры). Например, игра с матрицей имеет седловую точку при i0
= 2, j0
= 1, а значение игры равно 2; игра с матрицей не имеет седловой точки. Для неё оптимальные смешанные стратегии суть х*
= (3
/4
, 1
/4
), y*
= (1
/2
, 1
/2
); значение игры равно 1
/2
. Для фактического нахождения оптимальных смешанных стратегий чаще всего используют возможность сведения М. и. к задачам линейного программирования
. Можно использовать так называемый итеративный метод Брауна — Робинсон, состоящий в последовательном фиктивном «разыгрывании» данной игры с выбором игроками в каждой данной партии своих чистых стратегий, наилучших против накопленных к этому моменту стратегий оппонента. Игры, в которых один из игроков имеет только две стратегии, просто решить графически. М. и. могут служить математическими моделями многих простейших конфликтных ситуаций из области экономики, математической статистики, военного дела, биологии. Нередко в качестве одного из игроков рассматривают «природу», под которой понимается вся совокупность внешних обстоятельств, неизвестных принимающему решения лицу (другому игроку).
Лит.:
Матричные игры. [Сборник переводов], под редакцией Н. Н. Воробьева, М., 1961; Нейман Дж. фон, Моргенштерн О., Теория игр и экономическое поведение, перевод с английского, М., 1970; Оуэн Г., Теория игр, перевод с английского, М., 1971. А. А. Корбут.
Матричные модели
Матричные модели
в экономике, один из наиболее распространённых типов экономико-математических моделей. Представляют собой прямоугольные таблицы (матрицы
),
элементы которых отражают взаимосвязи экономических объектов и обладают определённым экономическим смыслом, значение которого вычисляется по установленным в теории матриц правилам. В М. м. отражается структура затрат на производство и распределение продукции и вновь созданной стоимости. М. м. — балансово-нормативные, они объединяют в единой табличной форме балансы распределения продукции (по отдельным её видам) и увязанные с ними балансы затрат на её производство, а также нормативы материальных и денежных затрат. М. м. используются для экономического анализа и плановых расчётов с применением электронной вычислительной техники.
Представленная в графическом виде (см. схему) М. м. экономического объекта имеет вид прямоугольной таблицы, разделённой на 4 четверти (квадранта). Уравнения строк матрицы , где элементы строки xij
— поставка продукции подразделения (отрасли) i
в подразделение (отрасль) j
, Yi
— конечная продукция подразделения (отрасли) i
, Xi
— валовая продукция подразделения (отрасли) i
, представляют собой балансы распределения продукции, произведённой в различных производственных подразделениях (например, в цехах предприятия), в различных экономических объектах (предприятиях, объединениях), в разных отраслях народного хозяйства. Они имеют совершенно очевидный экономический смысл: сумма внутрипроизводственных поставок и конечного продукта составляет валовой выпуск подразделения (отрасли). Столь же очевиден смысл уравнения, составленного из элементов столбцов матрицы: , где xij
— затраты продукции подразделения (отрасли) j
на производство продукции подразделения (отрасли) i
, Zj
— затраты первичных ресурсов и вновь созданная стоимость в подразделении (отрасли); X’j
— валовые затраты в сумме со вновь созданной стоимостью в подразделении (отрасли) j
, Xi
= X’j
, если i
тождественно j
; тогда в этом равенстве итогов одноимённых строк и столбцов находит выражение закон стоимости: стоимость распределённых и накопленных благ и услуг равна стоимости производственных затрат плюс вновь созданная стоимость. Из этого основного равенства М. м. вытекает целый ряд других производных уравнений, которые делают М. м. удобным расчётным плановым и аналитическим инструментом.